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Abstract

We consider a multi-layer network with two layers, L1, L2. Their intra-layer topology
shows a scale-free degree distribution and a core-periphery structure. A nested structure
describes the inter-layer topology, i.e., some nodes from L1, the generalists, have many links to
nodes in L2, specialists only have a few. This structure is verified by analyzing two empirical
networks from ecology and economics. To probe the robustness of the multi-layer network, we
remove nodes from L1 with their inter- and intra-layer links and measure the impact on the
size of the largest connected component, F2, in L2, which we take as a robustness measure.
We test different attack scenarios by preferably removing peripheral or core nodes. We also
vary the intra-layer coupling between generalists and specialists, to study their impact on the
robustness of the multi-layer network. We find that some combinations of attack scenario
and intra-layer coupling lead to very low robustness values, whereas others demonstrate
high robustness of the multi-layer network because of the intra-layer links. Our results shed
new light on the robustness of bipartite networks, which consider only inter-layer, but no
intra-layer links.

Keywords: bipartite network, nestedness, attack scenario, robustness profile

1 Introduction

Heterogeneity matters – also in complex networks. Nodes in real-world networks are most often
not similar ; they are very different with respect to their degree, i.e., the number of links to connect
them to other nodes. The concept of scale-free networks [5] reflects the fact that the degree
distribution is not only very broad, it often also lacks a characteristic scale to measure degrees [39].
Even nodes with a very large degree have a considerable probability to appear. Whether they
are indeed observed in real networks is mostly constrained by the size and the quality of the data
sets, which appears to be a bigger problem. But also the statistical methods used to estimate
these probabilities play a role in the current discussion about scale-free networks [10].

Scale-free networks became of interest because of their robust, yet fragile structure in case of
attacks. Nodes with a large degree, called hubs, are rare, nodes with a small degree very frequent.
An attack that randomly chooses a node for removal will therefore most often hit nodes with
low degree. Their removal does not change much topological properties of the network, such as
connectedness. However, if the attack is targeted toward the hubs, this considerably impacts the

1/20

ar
X

iv
:1

91
1.

03
27

7v
1 

 [
ph

ys
ic

s.
so

c-
ph

] 
 8

 N
ov

 2
01

9



Giona Casiraghi, Antonios Garas, Frank Schweitzer:
Probing the robustness of nested multi-layer networks

(Submitted for publication)

topology. Thus, it was argued that the robustness of scale-free networks against attacks could be
much improved if these hubs are protected. We will come back to this topological argumentation
later in our paper. At this point, we just remark that the perspective may change if a dynamics
on the network is considered [11].

In recent years, the investigation of scale-free networks was extended from single-layer to multi-
layer networks [18, 24, 45]. This development was driven by the insight that systems can be
hardly studied in isolation. Taking the example of a communication network, on the one hand,
and the power grid, on the other hand, it becomes obvious that these two networks mutually
influence each other [22].

To study such multi-layer networks requires to solve a number of problems, both methodological
and practical ones. To what extent can insights from single-layer networks be generalised to
multi-layer networks? For example, peripheral nodes, considered unimportant in a single-layer
network, can play an important role when coupling different layers [46]. The existence of inter-
layer couplings also challenge the robustness of such networks of networks [17], because they
allow for failure propagation between different layers [12].

On the empirical side, the biggest problem is the availability of data for both inter-layer and
intra-layer interactions, which would allow reconstructing a multi-layer network. Such data is,
unfortunately, only available in rare cases [23]. Therefore, instead of a complete multi-layer
network, most of the time, only its projection as a bipartite network is studied. Bipartite networks
neglect intra-layer links, to only focus on the inter-layer interaction. Ecological networks, for
instance, are most often represented as bipartite networks, reflecting mutualistic interactions e.g.,
between plant species and pollinator species [29, 30] (see also Section 2.3). The methodology for
studying ecological network was also adopted for economic and social networks [19, 28].

This raised the question of to what degree insights from bipartite networks or from their single-
layer projections remain valid for the bigger picture, the multi-layer networks. This regards
particularly estimates about the robustness of these networks. Studies have shown that the inter-
layer network structure affects the stability of ecological communities [2, 6, 37]. In particular, it
was found that a particular topology of the bipartite network, the nested structure, improves the
robustness of an ecosystem [27, 30, 31].

Recently, extinction patterns have been investigated even in multi-layer ecological networks [33].
But most of the time, the robustness of ecological networks is estimated from this bipartite
representation. The error made by neglecting intra-layer interactions, e.g., between plants, or
between pollinators is not known. Therefore, in this paper, we contribute to answering this
question by studying a synthetic multi-layer network, as explained in Section 2.1. In the absence
of reliable data about multi-layer networks, this approach allows us to systematically investigate
the impact of different inter-layer couplings together with different intra-layer topologies. For the
latter, we consider a scale-free degree distribution, but additionally a core-periphery structure as
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observed in many real-world networks (see Section 2.2). To specify the intra-layer topology, we
first study two empirical networks, from ecology and from economics (see Section 2.3). We further
introduce different attack strategies to probe the robustness of the synthetic multi-layer network,
as outlined in Section 2.4. Our results both for the ecological network and for the systematic
study of the synthetic network are presented in Section 3. We conclude in Section 4, linking our
investigations back to topics like systemic risk and network controllability.

2 Methods

2.1 A multi-layer network

In the following we consider interconnected networks [18]. These networks consist of layers, which
usually have different topologies. If the nodes in each layer are the same, these networks are called
multiplex networks. The links in each layer then represent different types of interactions between
the same nodes. By taking the example of an economic multiplex network [40], the nodes can
represent firms and the links in layer 1 ownership relations, while the links in layer 2 can represent
knowledge exchange, the links in layer 3 credit relations, or reputation spillovers, etc. [48].

In the more general case, denoted as multi-layer network, the nodes in different layers are also
different. The focus then is mostly on the coupling between nodes in different layers. Widely
known are bipartite networks, e.g., ecological networks between plants, in layer 1, and pollinators,
in layer 2, as further discussed in Section 2.3. Bipartite networks usually neglect links within
each layer, to address the coupling between layers. Multi-layer networks are more general in this
respect, as they allow to consider both intra-layer and inter-layer links, at the same time. An
illustration of a two-layer network is shown in Figure 1.

We can now characterise each of the nodes in a multi-layer network. Because the nodes in each
layer are different anyway, we just enumerate all the nodes consecutively, regardless of their
layer, i.e., i = 1, . . . , N . While we use N = 20 for the illustrations, the simulations on the
networks are done with N = 1.000. In both cases, each layer contains N/2 nodes. All possible
combinations to link these different nodes are then considered in an adjacency matrix A ∈ NN×N

in which the elements aij are either 0 or 1. This is illustrated in Figure 1(b). We call A the supra
adjacency matrix because it contains both the information about inter-layer and intra-layer links.
Specifically, A is composed of three different sub-matrices: A1 only contains the inter-layer links
from layer 1, while A2 contains only those from layer 2. B, on the other hand, contains all
information about the links between layers 1 and 2. Because here we consider undirected links,
there is only one sub-matrix B.

The sub-matrices allow us to define for each node two different degrees, the intra-layer degree,
li, and the inter-layer degree, di, which are discussed separately, in the following.
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Figure 1: (a) Illustration of an interconnected network with two layers. Each layer contains 10
nodes and shows a core-periphery structure. (b) Supra adjacency matrix A of the intercon-
nected network shown in (a). A1 and A2 capture the inter-layer links in layers 1 and 2, while
B captures the intra-layer links between layers 1 and 2.

2.2 Intra-layer topology

Degree distribution. For the link distribution within a given layer, we assume a scale-free
distribution: P (l) ∝ l−γ with exponent γ ' 2.3. Note that the intra-layer degrees of nodes in
both layers are drawn from the same distribution. To further specify the intra-layer topology,
we consider a core-periphery structure of the networks [36], which is found in many real-world
networks [14, 32, 41, 42]. It means that in both layers, the core nodes have many connections
to other core nodes, while nodes in the periphery are only loosely connected to the core and to
other peripheral nodes.

Coreness. The embeddedness of nodes in a core-pheriphery network can be quantified by
means of the k-core decomposition [15] which assigns a coreness value ki to each node. The
decomposition removes, from a given network, all nodes with a degree li ≤ k recursively, until
only nodes with degree k+1 are left. The procedure starts with k = 1 and stops when all nodes
left have a degree li ≤ kmax. The corresponding k-shell then consists of all nodes that are in a
k-core but not in the (k + 1)-core, i.e., nodes assigned to a k-shell have a coreness value ki = k.

Figure 2(a) provides an illustration of the core-periphery structure of each network layer, while
Figure 2(b) shows the corresponding distribution of coreness values, P (k). Nodes with low core-
ness values, ki → 1, are located in the periphery, i.e., they are loosely connected to the core, even
if some of them have a relatively high degree. Nodes with high coreness values, ki → kmax, are
densely connected and belong to the core (indicated by red colour). We note that, as in many
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Figure 2: (a) Core-periphery topology of a network layer with 500 nodes. The size of a node
is proportional to its degree, and its color indicates its coreness value ki. (b) Histogram of the
coreness values k of the network shown in (a). The colors correspond to the network.

real networks [6, 20, 44], the majority of the nodes are located in the periphery, and only a small
number of nodes belong to the core.

2.3 Inter-layer topology

To complete the multi-layered network, we now need to specify the inter-layer topology. For the
intra-layer links, we used empirical findings to motivate the core-periphery structure. Thus, for
the inter-layer link structure, we also seek inspiration from real-world networks.

Bipartite networks. We already pointed out that, in a multi-layer network, nodes in different
layers represent different types of entities, very similar to a bipartite network with two layers L1
and L2. Let us consider an example from ecology where nodes in L1 represent 25 plant species
(not individuals) and nodes in L2 79 pollinator species [29]. Links between these different types of
nodes then represent observed mutualistic interactions. Figure 3(a) shows a partial view for only
two plant species. The thickness of the links encodes the number of observations, i.e., how often
individuals of a given pollinator species have visited a plant of this species during a fixed time
interval. The size of the plant nodes is proportional to the number of pollinator species for each
plant species, and the size of the pollinator nodes is proportional to the number of plant species
that are served by this pollinator species. Taking all plant species into account, we obtain the
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bipartite network shown in Figure 3(b) by means of its connectivity matrix, also called incidence
matrix. This neglects any weights, i.e. filled/empty matrix elements indicate just the presence or
absence of links in the bipartite network. We recall that this matrix is denoted as B in the supra
adjacency matrix shown in Figure 1(b) because it refers to the inter-layer links.
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Figure 3: (a,c) Partial view of a bipartite network which links (a) two plants with their polli-
nators and (b) two firms with the countries their subsidiaries are located in. (b,d) Incidence
matrices for (b) the ecological and (c) the economic bipartite network. The matrices are sorted
using the NODF2 nestedness algorithm [3].

To highlight the generality of such examples across disciplines, we also consider a bipartite
network from economics that links 100 large multinational firms to the 39 different countries in
which their subsidiaries are located [19]. A partial view of this network is shown in Figure 3(c),
where link weights encode how many subsidiaries a firm has in a given country. The size of
the firm-nodes is proportional to the number of subsidiaries of each firm, and the size of the
country-nodes is proportional to the number of subsidiaries that are present in this country. The
unweighted incidence matrix is shown in Figure 3(d).

From the bipartite network, one can obtain two projections into single-layer networks. Taking
the ecological example, we could assume that two plant species are linked if they share the same
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pollinator species, or two pollinator species are linked if they serve the same plant species. A
simple exercise shows that these single-layer projections result in rather densely connected net-
works. Hence, these inferred interactions may not reflect the real intra-layer interactions among
pollinators or among plants. Features of the intra-layer topology, such as a scale-free distribu-
tion and a core-periphery structure, therefore cannot simply be explained from a projection of a
bipartite structure, they have their independent origin [23, 33].

Nestedness. To further characterise the structure of these two bipartite networks, we can
evaluate the network density by calculating how filled the incidence matrix is. For the ecological
network, the fill is 15.1% and for the economic network 36.6%, which means that only 15.1%
(36.6% respectively) of all possible inter-layer links have been observed.

As shown in Figure 3(b,d), the links of both bipartite networks are organised in a so-called
nested structure. For the economic network, this means that only some firms are present in a
large number of countries, while most other firms are present only in a few countries. Likewise, for
the ecological network, only some pollinators interact with many plants, while many pollinators
only interact with a few plants. Following the literature about ecological networks, nodes that
interact with a large number of nodes of the other type are called generalists (G), while nodes
that interact only with a small number of nodes of the other type are called specialists (S).

In ecology, the nested structure of bipartite networks has received much attention [4, 6, 7, 27, 30,
35, 37]. In particular, the distinction between specialists and generalists was confirmed for many
ecosystems. It was shown [8] that competition between species is minimised and biodiversity
is increased when the incidence matrix has a nested structure. Thus, the number of coexisting
species in an ecological system is related to the nestedness of the incidence matrix. It was ar-
gued [43] that nestedness is a consequence of maximising the number of species in a mutualistic
community, that is, of maximising an efficient resource usage.

In the same line, a nested structure was also found for networks in economics [19, 28, 37]. It was
shown that the interactions of agents that compete for maximising their centrality within their
local neighbourhood also leads to a nested network structure [25]. Since competition and efficient
resource usage are driving forces behind the evolution of many natural, social and technological
systems, it is reasonable to assume a nested structure also for the inter-layer links in our multi-
layer network.

Quantifying nestedness. We note that generalists and specialists are found among the
nodes in both layers. A perfect nested structure implies a perfect ranking of generalists and
specialists as illustrated in the incidence matrices B in Figure 5. Real incidence matrices never
show such a perfect nested structure, as Figure 3(b,d) indicates.
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In order to find the best possible ranking, an established procedure, the so-called NODF2 nested-
ness algorithm [3], is used for sorting the incidence matrix. This algorithm solves two problems:
first, it provides a rank ri for each node that can be used to distinguish generalists and specialists.
We remark that the rank ri is not a simple linear mapping of the intra-layer degree, di, although
these two values are not independent. Figure 4 shows the correlations between ri and di for the
respective layers of the two empirical bipartite networks.

0

20

40

60

80

0.00 0.25 0.50 0.75 1.00
ri

d i

Figure 4: Ranking ri obtained from the NODF2 algorithm vs. inter-layer degrees di for the
two empirical networks shown in Figure 3(b,d). Green denotes the economic network, blue the
ecological network. Nodes in L1 are denoted by  , nodes in L2 are denoted by N.

Second, this algorithm returns a nestedness value nNODF ∈ [0, 100] to characterise the whole bi-
partite network. nNODF = 0 when there is no nestedness and nNODF = 100 for perfect nestedness.
We have applied NODF2 to the two empirical incidence matrices shown in Figure 3(b,d), and
obtained for the ecological network nNODF = 42.8 and for the economic network nNODF = 75.9

as the best possible values.

To assess the significance of these numbers, we used a null model introduced in [7]. It randomises
the inter-layer links (who is connected to whom) but preserves the degree distribution (how many
links a node has). Specifically, we build an ensemble of bipartite networks that link nodes from
layers 1 and 2 with a probability proportional to their degree in the empirical bipartite network.
Thus, the probability of node i from L1 (e.g., a plant) to be linked to a node j from L2 (e.g.,
a pollinator) is pij = (di/N1 + dj/N2)/2, where di, dj are the number of links of nodes i and j
in the bipartite network. N1 and N2 are the number of nodes in layers 1 and 2 of the bipartite
network. This way, we find, for example, that the nestedness value of nNODF = 75.9 for the
economic network is significant with p < 0.0001.

We also use the NODF2 nestedness algorithm [3] to generate the structure of inter-layer links in
our multi-layer network. For this, we first choose a fill level, 35%, which defines the density of the
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inter-layer links. Then, we arrange these links in a perfectly nested structure (nNODF = 99.06),
shown in the incidence matrices B in Figure 5. Nodes from L1 with a high rank ri are generalists
in layer 1, denoted as G1, while nodes from L1 with low rank are specialists, denoted as S1. Taking
the perspective of layer 2, we can also indicate the generalists of L2, G2, and the specialists of
L2, S2.

With this, we have all the information together to characterise the nodes in the multi-layer net-
work. Each node i ∈ N is assigned to a layer, either L1 or L2. Its network position within a layer
is quantified by its coreness ki, while its role in connecting the two layers is quantified by its rank
ri which tells, with respect to a given layer, to what degree this node is a generalist or a specialist.
To say it again: core/periphery always refers to a specific layer, while generalist/specialist refers
to the coupling between the two layers.

2.4 Scenarios to probe robustness

Attack scenarios. To probe the robustness of the multi-layer network, we utilise a classic
approach [1]: (i) we remove an increasing fraction of nodes and their links from the network, (ii) we
then calculate the size of the largest connected component (LCC) of the remaining network [38].
The classic paper only considers one network of a given topology, either a random graph or
a scale-free network. It then compares the impact on the LCC if randomly chosen nodes are
removed or if nodes with high degree (hubs) are removed, specifically. These different ways to
choose nodes for removal were called attack scenarios, a term we also use in the following. Not
surprisingly, it was found that scale-free networks are robust against random attacks, but fragile
if targeted attacks of hubs happen. This finding was used to discuss the robustness of the internet,
which can also be represented as a scale-free network. But such a simplifying extrapolation was
met with harsh criticism [16]. Different from the classic paper, in our model we have many more
degrees of freedom to (i) consider attacks, and (ii) specify the multi-layer network, which needs
to be done in the following.

Selection of nodes for removal. First, in addition to the degree of nodes, which was the
only characteristic used in the classic paper, we have information about the coreness, which
much better describes the embeddedness of nodes in a network. Thus, we will choose the varying
fraction of nodes to be removed with respect to their coreness values. This makes a distinction
between core and periphery, rather than between high and low degree nodes (hubs vs spokes).

Second, we have a multi-layer network; therefore, in principle, we could remove nodes from
different layers. But for a more systematic approach, we decide to remove only nodes from one
layer, L1, to then study the effect on the other layer, L2. For this, we define the fraction of
surviving nodes in each layer as F1, F2. Then (1−F1) is the fraction of nodes that we remove in
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L1. To choose, which nodes shall be removed from L1, we consider 3 different attack scenarios.
(1) nodes are randomly chosen, i.e., with no particular order, (2) nodes are chosen in the order
of decreasing coreness ki (i.e., we start with nodes from the core), (3) nodes are chosen in the
order of increasing coreness ki (i.e., we start with nodes from the periphery). Because coreness
values are degenerate, we choose randomly among the nodes with the same coreness value.

Removal of nodes. Specifically, the removal of nodes from L1 impacts L2 in the following
way. (i) A node from L1 is removed together with all its intra-layer links and all its inter-layer
links. (ii) The affected nodes ∗ in L2 therefore have less inter-layer links, d∗. If d∗ > 0, these
nodes are not removed and the procedure stops. If d∗ = 0, i.e., if these nodes are no longer
connected to L1, they are removed from L2 together with all their intra-layer links. (iii) If the
removal procedure of links in L2 leaves other nodes isolated in L2, they will be removed as well
together with all their inter-layer links. The removal process stops when no nodes in L2 are left
disconnected.

In other words, we assume that nodes in L2 depend on nodes both from L1 and L2. The removal
procedure in L1 results in a so-called secondary node loss in L2, measured by (1−F2), where F2 is
the fraction of surviving nodes in L2. Because of the node and link removal in L2, there is a chance
that the network fragments into disconnected components of various size (the procedure avoids
isolated nodes). Such a fragmented network can still have a large F2 because that value does not
reflect whether the network is connected or not. This, on the other hand, would result in wrong
conclusions about the robustness of the network, which is reduced because of the fragmentation.
Therefore, we will calculate F2 only on the largest connected component of the network. This
ignores other components, but that the same time gives us a better insight into the robustness
of the multi-layer network.

Influence of the inter-layer coupling. As the last degree of freedom in our modelling
approach, we have to specify further how the two layers are coupled. We recall that, in each
layer, nodes are characterised by their inter-layer degree di and by their ranking ri, to reflect
their role as generalists or specialists. Using this information, we can discuss different ways of
inter-layer coupling between generalists and specialists in each layer. In the following, we focus
on core nodes, i.e., nodes characterised by a high coreness value ki in their respective layer. In
Figure 5, the size of the nodes is chosen proportional to their coreness value (because the network
is small, some nodes have only small ki).

Figure 5 illustrates different ways to couple generalists and specialists: (a) a random connection
between core nodes from L1 and L2, which we use as a reference case, (b) cG1-cG2, i.e., core
nodes from L1 that are generalists are coupled to core nodes from L2 that are also generalists,
(c) cG1-cS2, i.e., core nodes from L1 that are generalists are coupled to core nodes from L2 that
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are specialists, (d) cS1-cS2, i.e., core nodes from L1 that are specialists are coupled to core nodes
from L2 that are also specialists. For each combination, we also show the respective incidence
matrix B.

(a)
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Figure 5: Different couplings in a two-layer network of N = 20 nodes: (a) random connection,
used as a null model; (b) cG1-cG2; (c) cG1-cS2; (d) cS1-cS2. The nodes in both layers are
ranked in decreasing order of ri with respect to (b) (i.e., generalists on the left, specialists on
the right). The size of the nodes is proportional to their coreness ki, obtained in a scale-free
core-periphery network. For all couplings, the incidence matrices B are also shown.

3 Results

3.1 Robustness of the ecological sample network

To get a better idea how to interpret the results of our probing procedure, we start with a real-
world example, the ecological bipartite network between plant and pollinator species shown in
Figure 3(a,b). This network is different from the multi-layer networks discussed in Section 3.2
in that it only contains inter-layer links and no intra-layer links. Therefore, we cannot apply
our attack scenarios (1)-(3), to remove nodes based on their coreness values, ki. Instead, we
take the only information available and remove nodes according to their intra-layer degrees, di.
Because there are no intra-layer links and, hence, no components, F2 gives the fraction of all
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nodes surviving in L2 Thus, we get a feeling of how the robustness of the multi-layer network is
affected in the absense of intra-layer links, but with a nested structure to couple both layers.
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Figure 6: (a) Fraction of nodes surviving in L2 dependent on the fraction of nodes removed
from L1. N: random removal scenario, �: nodes are removed in the order of decreasing di,  :
nodes are removed in the order of increasing di. The results are averaged over 100 simulations,
and the standard errors are smaller than the size of the symbols. (b) Robustness profile.

The data of the ecological network comes from [34]. The robustness of this nested network was
already studied in [30]. There, very similar to our approach, different attack scenarios for node
removal were applied to the pollinators in L1, to measure the impact on the plants in L2. We
reproduce the respective results in Figure 6(a), to also verify that our method leads to the same
outcome as shown in [30] (there: Figure 1b). In Figure 6(b) we show the robustness profile as a
different way of visualising the results.

Figure 6(a) shows that the ecological network is very robust against the random removal of
pollinator species. Only if more than 80% are removed, a noticeable impact on the plant species
can be observed, and at about 95% a breakdown happens. The situation is even better if instead
of a random removal, removal of nodes in the order of increasing di is considered. Nodes with
small di are very likely peripheral nodes in the bipartite network and at the same time very
likely specialists (see Figure 4a). Thus, the network is extremely robust against their removal –
as long as generalists are still available. If, however, the removal starts with nodes of high di,
which are likely core nodes and generalists in the bipartite network (see Figure 4), the robustness
decreases very quickly and faster than linear with the fraction of removed nodes. This reminds
on the fragility of scale-free networks in case hubs are removed, but, different from the synthetic
networks discussed afterwards, the ecological network studied here is not a scale-free network.
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The robustness profile in Figure 6(b) compacts these insights. The three axes of the spider-plot
refer to the three different attack scenarios. On each axis, the fraction of removed nodes from
L1 increases from the origin towards the corner. The colour codes the robustness of the network,
as measured by F2: the lighter, the more robust the network. Deep red colour thus indicates an
outcome where less than 20% of nodes in L2 have survived. It is obvious that this happens if
nodes with high di are chosen first to be removed.

With respect to the ecological network, we can conclude that systems characterised by mutualistic
interactions, which are usually described by nested structures of their incidence matrix, are
particularly robust [30, 31].

3.2 Robustness of the full model

With this information, we now turn to the full model of multi-layer networks that also include
intra-layer links, as shown in Figure 1. We remove nodes from L1 according to their coreness
values, ki, as described in the different attack scenarios (1)-(3) in Section 2.4, and we measure
the impact on L2 by the fraction of the largest connected component of surviving nodes, F2. In
addition to the attack scenarios, we also vary the inter-layer coupling, as shown in Figure 5. Our
results are obtained from scale-free two-layer networks with 1000 nodes and averaged over 100
simulations. The standard errors are smaller than the size of the symbols.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

0.8

0.6

0.4

0.2

0.0

1-F₁

F₂

(a)

kmax kmin

krand

Random Coupling

<20%

40%-50%
50%-60%
60%-70%
70%-80%
80%-90%

30%-40%
20%-30%

>90%

100%

70%
60%
50%
40%
30%

80%
90%

20%
10%

0%

Fraction F₂ 1-F₁

(b)

Figure 7: Random coupling between L1 and L2. (a) Fraction of nodes surviving in L2 depen-
dent on the fraction of nodes removed from L1. Attack scenarios: (1) N, (2) �, (3)  . (b)
Robustness profile: krand refers to attack scenario (1), kmax to (2), kmin to (3).

Let us first discuss a reference case, namely the random coupling between layers, Figure 5(a), and
the random removal of nodes, attack scenario (1). The results are shown in Figure 7. We verify
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that scale-free networks are robust against random node removal also for the case of two-layer
networks with intra- and inter-layer links. This insight does not change if instead of random
removal nodes with decreasing coreness are removed (2), and it only slightly worsened if instead
the removal of nodes with increasing coreness is considered (3). We note that in this reference
case, due to the random coupling between the two layers, the nested structure is destroyed, as
also shown in Figure 9(a).

To further investigate the role of nestedness, we now discuss the three different couplings that
respect this nested structure. The results are shown together in Figure 8. We start with coupling
generalists in both layers, shown in Figure 8(a,b). We find that the removal of core nodes from
L1, (2), has a considerable impact on the robustness, whereas the other two attack scenarios
do not decrease the robustness. Precisely, the removal of the 10% top core nodes in L1 can
lead to almost 20% secondary node losses in L2. This bears similarities with the plots for the
ecological network, Figure 6, although the decrease of the respective curve (2) is not as quick for
the multi-layer network.

If we now connect the generalists of L1 with the specialists of L2 (instead of the generalists), we
find that things get worse when core nodes from L1 are removed (2). As shown in Figure 8(c,d),
in this case the removal of the 10% top core nodes in L1 leads to almost 40% secondary node
losses in L2, while a removal of the 40% top core nodes in L1 totally destroys the network in L2,
already. This is a noticeable difference to the other two attack scenarios, which have no (1) or
little (3) impact on the robustness of the multi-layer network.

If, on the other hand, we connect the specialists of both layers, we find that the removal of
core nodes from L1 (2) has very little impact, as Figure 8(e,f) shows. It requires the systematic
removal of more than 80% of the core nodes in L1 to trigger any secondary node loss in L2. We
see instead that the multi-layer network becomes less robust against the removal of peripheral
nodes from L1 (3). Also, the random removal (1) results in a larger decrease of robustness than
the removal of top core nodes (3). For removal of peripheral nodes up to 70%, the scenarios (1)
and (3) give the same results, which are both worse than for scenario (3).

In conclusion, we find that the impact of the different attack strategies (1)-(3) strongly depends
on the inter-layer coupling. When the generalists of L1 are coupled to L2 (either to the generalists
or the specialists), we find that removing core nodes from L1 leads to the strongest decrease on
the robustness of the multi-layer network. On the other hand, if the specialists of L1 are coupled to
the generalists of L2, we find that the removal of peripheral nodes from L1 reduces the robustness
more.

This insight cannot be simply explained by the argument that generalists are often core nodes,
and specialists are often peripheral nodes. As Figure 9(b) shows, for scale-free networks the
correlations between coreness ki and ranking ri are not that simple – not even in the case of
perfect nestedness, we considered here. Nodes with low coreness, i.e., peripheral nodes, can still
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Figure 8: (left) Fraction of nodes surviving in L2 dependent on the fraction of nodes removed
from L1. Coupling between L1 and L2: (a,b) cG1-cG2, (c,d) cG1-cS2, (e,f) cS1-cS2. Attack
scenarios: (1) N, (2) �, (3)  . (right) Robustness profiles: krand refers to attack scenario (1),
kmax to (2), kmin to (3).
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(a) (b)

Figure 9: Ranking ri obtained from the NODF2 algorithm for the 500 nodes of L1 vs. coreness
values ki, considering (a) random coupling, (b) coupling of core generalists (cG1). We note
that the ranking obtained for the coupling of core specialists (cS1) would just invert the x axis
in (b).

have considerably high ranks, i.e., play the role of generalists. Nodes with high coreness, i.e.,
core nodes, on the other hand, can have ranks comparable to peripheral nodes. Therefore, the
interplay between inter-layer coupling and attack strategies need to be taken into account to
explain the robustness of the multi-layer network.

4 Discussion

In this paper, we have extended the discussion about the robustness of scale-free networks to
multi-layer networks with different couplings between the layers. For the topology within and
across layers, we have utilised insights from empirical networks. For the intra-layer topology, we
considered a core-periphery structure, which was quantified by assigning a coreness value to each
node. For the inter-layer topology, we considered a nested structure, which was quantified by
assigning a rank to each node, obtained from the NODF2 algorithm.

The robustness of the multi-layer network was probed by removing a fraction of nodes from
layer L1 together with their intra- and inter-layer links, and measuring the fraction of nodes
surviving in the LCC of layer L2. We assumed that nodes in L2 which became disconnected from
L1 because of the node removal are removed in L2 together with their intra-layer links.

16/20



Giona Casiraghi, Antonios Garas, Frank Schweitzer:
Probing the robustness of nested multi-layer networks

(Submitted for publication)

In our approach we varied two model features: (i) the attack scenarios within L1: removing
nodes either randomly (1), with decreasing (2) or increasing coreness (3), and (ii) the coupling
of generalists and specialists between L1 and L2: either randomly, or cG1-cG2, cG1-cS2, cS1-cS2.

We found that for the robustness of multi-layer networks, the two features need to be considered
together. While it is already known that nested bipartite networks are particularly robust [30, 31],
the nested structure alone is not sufficient to explain the robustness. Instead, the intra-layer
topology, specifically the core-periphery structure, also plays an important role. Removing core
nodes first does not always lead to a larger decrease in robustness, and removing peripheral nodes
first does not always lead to a smaller decrease. The impact of these attack scenarios depends on
whether generalists or specialists are coupled. The strongest effect was observed for the coupling
cG1-cS2 and the removal of core nodes. Already 40% of nodes removed from L1 was sufficient
to destroy the multi-layer network. This outcome could not be simply anticipated, but it results
from the non-linear impact of the two features combined in this specific manner.

Our theoretical findings are of relevance for ecological systems, which are very often only stud-
ied as bipartite networks, i.e., neglecting intra-layer links. We found that considering such links
may eventually lead to higher robustness for certain nested structures. Or, to put it the other
way round, reducing multi-layer networks, for example, ecological or economic ones, to a bipar-
tite network structure, results in wrong estimations about their robustness. This points to the
availability of empirical data to reconstruct such multi-layer networks instead of bipartite ones.
Such data is rare, but in principle, there are ways to infer interactions in ecological systems from
limited information [23].

With respect to modelling the robustness of multi-layer networks, which was our main focus in
this paper, we see two different extensions of the scope. The first one regards a more refined
modelling of the impact of node removals in L1. We have considered that the intra-layer and
inter-layer links of these nodes are removed as well. But we have not considered that the removal
of individual nodes generates failure cascades, because other nodes in L1 may have been discon-
nected. This is a major difference to investigations about systemic risk, which reflect that the
failure (or the removal) of a few nodes may be amplified into large failure cascades.

To model this amplification, we need more information about the vulnerability of the nodes,
but also about their interaction with neighbouring nodes. Systemic risk is then quantified as
the fraction of failed nodes at the end of a failure cascade. There exist already mathematical
frameworks to calculate systemic risk for single layer [13, 21] and multi-layer [12] networks. For
the latter case, it was shown that a critical coupling strength between the two layers exists. Below
the critical value, failure cascades can be reduced, and the multi-layer network is more robust,
above the critical value. However, these cascades are even amplified between the layers, and the
multi-layer network becomes less robust.
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The second extension regards the control of multi-layer networks such that their robustness
is increased. For single-layer networks, a framework for network controllability was proposed
in [26]. It identifies nodes that are most influential in driving the network towards the desired
state. Applying this framework, however, requires assumptions about a linear dynamics that
runs on the network to allow for the control. Extensions to the control of multi-layer networks
have been proposed already [9, 47]. Interestingly, it was demonstrated for different inter-layer
couplings that peripheral nodes are as valuable as core nodes in controlling multi-layer scale-free
networks [46].

Such network interventions are a promising alternative to improve the robustness of multi-layer
networks. But, again, to apply the respective frameworks requires much more information about
the state of the nodes and their interactions. In our paper, we have chosen only a minimal set
of assumptions, to have a clear focus on the impact of different inter-layer couplings – the main
difference between single-layer and multi-layer networks.
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