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We investigate a multi-agent model of firms in a Research & Development (R&D) network.

Each firm is characterized by its knowledge stock xi(t), which follows a non-linear

dynamics. xi(t) grows with the input from other firms, i.e., by knowledge transfer, and

decays otherwise. However, maintaining the interactions that increase knowledge stock

is costly for all partners involved. Because of this, firms leave the network whenever

their expected knowledge growth is not realized. This, in turn, may cause other firms

also to leave the network. The paper discusses two bottom-up intervention scenarios to

prevent, reduce, or delay such cascades of firms leaving. The first one is based on the

formalism of network controllability, in which driver nodes are identified and subsequently

incentivized, by reducing their costs. The second one combines node interventions and

network interventions. It proposes the controlled removal of a single firm and the random

replacement of firms leaving. This allows to generate small cascades, which prevents

the occurrence of large cascades. We find that both approaches successfully mitigate

cascades and thus improve the resilience of the R&D network.

Keywords: network, control, robustness, failure cascade, agent-based model (ABM)

1. INTRODUCTION

Interventions belong to the tool box of systems design [1]. The ability to influence systems such that
they reach a desired state or show a desired behavior, is not only of relevance for engineers and
operators. This ability is also favored by managers or politicians, who wish to steer the dynamics
of socio-economic systems toward a particular outcome. Most of the interventions in economic
systems are targeted at the macro level, for instance by adjusting tax rates or legal conditions. They
follow a top-down approach: a centralized decision to change some “boundary conditions” induces
an adaptation of the system, hopefully in the right, i.e., wanted, direction.

This approach is contrasted with the bottom-up approach that targets system elements rather
than systems as a whole [2–4]. It plays a major role in complex systems comprising a large number
of elements, denoted as agents in the following. Bottom-up interventions can be targeted either at
specific agents or at their interactions or at the network as a whole [5]. In socio-economic systems,
agent specific interventions include, for example, monetary incentives (e.g., reduced costs, bonuses)
or privileged access to resources (e.g., information, credit) [6, 7].

Complex socio-economic systems are often represented as networks, where agents are depicted
as nodes and their interactions as links. To utilize a bottom-up approach of interventions requires
to solve a number of problems that are later addressed also in this paper. First of all, we need to
find out which agents are the most promising ones to drive a system, i.e., we need to identify driver
nodes. This problem can be only tackled if we know how agents influence another, i.e., we need
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to specify the dynamics on the network. Secondly, we need to
determine the desired state of the system, and eventually we need
to calculate the appropriate intervention that is suitable to drive
the network toward this state.

These problems are exacerbated if, in addition to the dynamics
on the network, there is also a dynamics of the network. That
means, the network itself changes because (i) agents join or
leave the network or (ii) add, remove, or rewire their links to
other agents. The dynamics of the system is then described by
two time scales, one at which interactions happen, and one at
which the network evolves, e.g., at which different agents enter
or leave the network. Most real-world socio-economic systems
are characterized by these couplings of time scales. For example,
online social networks become quite volatile because users enter
and exit and also change their interactions with other users at
high frequency. This makes it difficult to assess the robustness
of such systems. If users start to leave and this way generate
large cascades of other users leaving, these networks may even
collapse [8].

To model the direct and indirect impact of nodes leaving
a network, two different approaches are followed. The first
one focuses on the network topology, specifically on the degree
of the nodes and their embedding. One example is the k-
core decomposition model [9, 10] to explain cascades. The
second one also includes the internal dynamics of the nodes,
for example the threshold model [11, 12]. Combinations of
these approaches, such as the KQ model [13] lead to a better
formal understanding of the emergence of systemic risk [14–
16], i.e., the collapse of a large part of the system because of
failure cascades.

Also economic networks are prone to failure cascades and
decline [17, 18]. In this paper, we discuss the case of R&D
networks, used for the knowledge exchange between firms.
Empirical studies have shown that such networks exhibit a life
cycle dynamics, i.e., they grow and later decay [19, 20] because
in R&D collaborations firms usually terminate their interactions
after some time. Either the purpose of their collaborations is
fulfilled, e.g., a number of patents are filed, or it is not fulfilled. For
example, firms have not obtained an expected knowledge stock or
an expected growth of knowledge and therefore decide to leave
the network to save the costs involved in collaborations. If firms
leave, this may cause other firms to leave as well, because they lost
the input from their collaboration partners. Thus, before we can
think of interventions, we need to model this process, which is
provided in section 2.

Based on these insights, we will then develop two different
approaches toward interventions in sections 3, 4. The aim of these
interventions is to prevent large cascades of firms leaving the
collaboration network. If that is not entirely possible, we want
at least to reduce the size of such cascades, or to delay them.
Our first approach is rooted in control theory [21, 22] applied to
complex networks, a recent development that lead to the concept
of network controllability [23]. Basically, we identify a set of
driver nodes with two different methods, to which an incentive
is applied. The formal method relies on a linear dynamics on
the network, which is often not given. Generalizations to non-
liner problems are not straightforward, as discussed in [24, 25].

For these reasons, we will mainly use computational methods
in this paper.

To contrast the formal approach, our second approach is
based on heuristics, that means on experience and intuition.
It combines two different types of interventions: a network
intervention, targeted at the whole network to allow a continuous
evolution, and a node intervention targeted at only one firm. It
was already shown, for the simpler case of a linear dynamics,
that such heuristic approaches can significantly improve the
robustness of networked systems [26]. Here we investigate the
case of a non-linear dynamics and a fixed driver node. We are
mainly interested to see how this heuristic intervention fares
in comparison to the formal intervention based on network
controllability. What are the advantages and shortcomings of
these two different interventions? And to what extent can they
be applied to a knowledge exchange network of firms? These
questions will be discussed in section 5.

2. GENERATION OF KNOWLEDGE STOCK

2.1. A Network Model of Interacting Firms
2.1.1. Knowledge Stock
In the following, we utilize a multi-agent model of firms i =
1, . . . ,N, which are each characterized by a scalar variable xi(t),
their knowledge stock. This summarizes for example the R&D
(research and development) experience of a firm, measurable
by its number of patents and research alliances. xi can have
continuous values which have to be positive, and can change over
time at a time scale t.

To specify this dynamics we first note that the value of the
knowledge stock continuously decreases if it is not maintained.
Hence, we consider a decay term −γ xi(t) with a decay rate
γ characterizing the life time of the knowledge stock. To
compensate for the decay, we need to make assumptions about
the growth of the knowledge stock. One could reasonably argue
about a source term that reflects inhouse R&D activities [27].
The main focus in our paper, however, is on knowledge transfer.
Therefore, we assume that the growth of xi is mainly driven by
input from other firms, i.e., by R&D collaborations, rather than by
own research activities. This reflects empirical observations for
innovation networks of firms [19].

2.1.2. Network Representation
To model knowledge transfer, we use a network, in which nodes
represent agents, i.e., firms, and links their interactions. The
network approach implies that interactions in a group ofN firms,
e.g., in R&D alliances between 2 and 10 firms, are decomposed
into dyadic interactions between any two of these N firms. We
further consider direct interactions between firms. That is, an
interaction i → j describes that firm i transfers knowledge to
firm j, but this does not necessarily has to be reciprocal, i.e.,
j 6→ i is possible. With N firms, there are N(N − 1) different
directed dyadic interactions possible. Whether they take place is
described in an adjacency matrix A of size N × N, in which an
entry aij = 1 indicates a link i → j, and aij = 0 its absence.
Empirical investigations have shown that such matrices for R&D
collaborations are usually sparse, that means the number of links
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FIGURE 1 | Dynamics of the knowledge stock, Equation (1), in a small network of 5 firms. The size of a node is proportional to its in-degree. The color of the each

knowledge stock’s line matches that of the corresponding node in the respective network. (A–C) show the dynamics for three different network configurations.

is of the order N rather than N2. Based on the entries in the
adjacency matrix we can define the in-degree d+i =

∑

j aji of a

firm i as the number of incoming links from other firms, and the
out-degree d−i =

∑

j aij as the number of outgoing links to other

firms. Note that in general aij 6= aji.

2.1.3. Knowledge Growth
Our main assumption is that the knowledge growth of firm i is
determined by the knowledge stock of those firms j that have
direct link to i, as expressed by the aji, i.e., it is proportional to
xj(t), with the proportionality constant b to weight the benefit.
Further, it is reasonable to consider a saturation for the growth of
knowledge stock. At higher levels of xi, it becomes more difficult
for firm i to “absorb” new knowledge, i.e., to incorporate it into
a firm because of the internal complexity associated with the
way knowledge is stored and linked internally. This absorptive
capacity is for simplicity reflected in a quadratic term ĉ x2i , as
known from saturated growth dynamics [28].

The proportionality factor ĉ for the saturation effect, however,
deserves a discussion, as there are different arguments possible. It
could be simply a constant, ĉ ≡ c0, to reflect that the saturation
effect depends mainly on the knowledge stock of firm i. On the
other hand, it could be also an individual variable, ĉ ≡ ci, to
incorporate further influences. One possibility is a dependency
on the in-degree, c+i = cd+i , based on the argument that a
larger number of firms transferring knowledge to firm imakes the
absorption of knowledge more difficult. Another possibility is a
dependency on the out-degree, c−i = cd−i , based on the argument
that, in addition to the absorption of knowledge, firm i also has
to maintain links to other firms j, which consumes resources, and
therefore exacerbates the problem. In this paper, we follow the
latter argumentation which was also used in [29], i.e., ĉ = cd−i .

Combining these assumptions, we propose the following
dynamics for the knowledge stock [29]:

dxi(t)

dt
= −γ xi(t)+ b

∑

j
aji xj(t)+ bext

∑

j
pji xj(t)− cd−i x

2
i (t)

(1)
Here, it is additionally considered that some links, denoted by
pji, provide firm i with a direct input from particular valuable
firms. For example, instead of obtaining indirect knowledge input
from a firm k via other firms j, firm i would much more benefit
if k had a direct link to i. So, if pji = 1, there will be an
extra benefit bext from interacting with this valuable agent. Such
shortcut externalities have been discussed [e.g., [29, p. 247]]. In
the following, we drop this term in the dynamics, to simplify
the analysis.

2.1.4. Direct and Indirect Reciprocity
The above dynamics leads to a stationary, but non zero value
of the knowledge stock only if the network contains cycles of
firms benefiting another, as illustrated in Figure 1. The shortest
possible cycle involves two firms, for example 1 → 2, 2 →
1 in Figures 1A,B. This mutual interaction relates to direct
reciprocity, as firm 1 contributes to the knowledge stock of firm
2 and the other way round. But these cycles can be also larger,
as Figure 1C illustrates. In this case, firm 1 still contributes to
the knowledge stock of firm 2, but does not receive a reciprocal
benefit from firm 2. Still, firm 1 benefits from being part of a
closed cycle 1 → 2 → 4 → 5 → 1, i.e., it receives an
indirect benefit from firm 2, via firms 4 and 5. Such constellations
relate to indirect reciprocity, which plays an important role also
in the emergence of cooperation [30]. Also the development of
technology depends on the existence of such feedback cycles
[31]. Hence, links that contribute to closing these cycles in the
interaction network could for example receive an extra benefit,
bext, although this is not considered here.

It is worth noticing that not all firms need to be part of cycles,
to obtain a non-zero knowledge stock. In Figure 1A, we show a
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configuration where firm 3 benefits from the knowledge transfer
from firm 2, but does not contribute in a reciprocal manner.
Because this even saves the costs frommaintaining the links, firm
3 obtains the highest value x3. Comparing Figures 1A,B, we see
that firm 3, even with a higher in-degree, does not necessarily
have the highest value x3. This points to the impact of the non-
linear dynamics of the knowledge stock, which cannot be simply
reduced to the influence of in-degrees.

Eventually, we note that firms reach a non-trivial stationary
knowledge stock only if they are connected to a cycle. In
Figure 1A, Firms 4 and 5 contribute to the knowledge stock of
firm 1, but do not receive any reciprocal contribution. Hence,
x4 → 0 and x5 → 0 over time.

In general, the existence of non-trivial steady states, i.e.,
xi(t → ∞) > 0, for firms i that are part of a network G, i ∈ V(G),
can be ascertained by studying the irreducibility of the graph G

[29, 32]. In particular, the existence of at least one closed cycle in
the graph is sufficient to assure that both firms in the cycle and
firms that receive links from firms within the cycle have a non-
zero stationary knowledge stock. Moreover, for special classes of
graphs it is possible to find analytical solutions for the values of
the steady states [29].

2.2. Decision to Leave the Network
2.2.1. Knowledge Stock and Growth
Firms participate in knowledge transfer because they have the
expectation that their knowledge stock grows over time. So, it is
reasonable to assume that after the knowledge stock dynamics has
converged to the stationary value, they evaluate the performance.
Based on this, they may decide to leave the network, i.e., to cut
all their outgoing links. Because this decision is based on the
stationary values of the knowledge stocks, xstati , it takes place at
a different time scale T, which is longer than the time scale t at
which the knowledge stock reaches its stationary value.

Specifically, we consider that at each time step T, firms
compare (A) their absolute value of the knowledge stock, xstati (T)

with a threshold, xthr (equal to all firms), and (B) their growth
of the knowledge stock in the past time step, gi(T) = xstati (T) −
xstati (T− 1) with a threshold, gthr (equal to all firms). They decide
to continue to collaborate only if both of their respective values
are above the thresholds. If any of these two conditions are not
met, firms decide to leave with a certain probability p, which
implies that they do not immediately leave.

We note that both conditions reflect different aspects that
influence firms decisions. Condition (A) uses a cost/benefit
assessment. If, in the current situation, the costs are higher than
the benefits from receiving knowledge input, firms may choose
to leave. That means, higher values of xthr consider a sensitivity
for higher costs. Condition (B), on the other hand, captures to
what extent the expectations of firms regarding the growth of
knowledge stock are met. Higher values of gthr therefore indicate
a lower tolerance of firms, if their expectations are not met.

If firms leave the network, this impacts the transfer of
knowledge between firms in two ways: (i) directly, because firms
leaving no longer contribute to the knowledge stock of their
previous partners, (ii) indirectly, because firms leaving change the

structure of the network and this way also the cycles of indirect
reciprocity. This, on the other hand, generates an impact on the
knowledge growth and the knowledge transfer of the remaining
firms in the next time step. Hence, at time T + 1 the remaining
firms obtain a different knowledge stock, xstat(T + 1) and a
different growth rate, g(T+1). Thismay cause other firms to leave
the network, i.e., we observe cascades of firms dropping out. Such
observations are in qualitative agreement with empirical studies
about the life cycle of R&D network, where indeed a decline of
firms participating can be found [19].

2.2.2. An Example
Figure 2 illustrates such a cascade of firms leaving the network.
At time steps T = 1, 5, the firms colored in gray leave the network
because their knowledge stocks xstati (T) fell below the threshold

value xthr (condition A). At time steps T = 2, 3, 4, 6, on the other
hand, the firms colored in gray leave the network because their
expectations about their knowledge growth gstati (T) fell below

the corresponding threshold gthr (condition B). These firms have
indeed a high knowledge stock, i.e., they pass condition (A).
That means, with just the comparison of knowledge stock, we
would not observe that a cascade emerges. The comparison of
knowledge growth thus adds a new element to the dynamics.
Because expectations are considered, we observe in our model
that also firms with a high knowledge stock and a high
number of connections from partners may decide to leave the
network, which makes our model different from other cascade
models [11, 12, 16].

3. A FORMAL APPROACH TO
INTERVENTIONS

3.1. Interventions and Network Topology
The above discussion makes very clear that our interventions
shall prevent the breakdown of the network of firms collaborating
in knowledge exchange. As our ultimate aim, we want to (i)
prevent cascades of firms leaving the network or, if that is
not entirely possible, (ii) reduce the cascade size such that the
majority of firms still remains in the network, or (iii) delay the
occurrence of cascades such that the network remains at least for
a given time horizon, T .

This closely relates to investigations of systemic risk, which is
measured by the fraction X(t) of failing agents/nodes in a system.
Systemic risk usually emerges from the early failure of very few
agents, which affects other agents and causes them to fail, this
way leading to a failure cascade. If X(t) approaches 1, most parts
of the system are destroyed. Therefore, we can quantify the aim
of our intervention strategies as keeping X(t → T ) low, precisely
below 0.5. This means, the majority of firms stays in the network
for a finite, but large time T .

This aim can be achieved by interventions on the network level
and/or the node level. In the following, we discuss two scenarios
that combine interventions on these levels in different ways. In
this section, we take a formal approach to network interventions
that focuses on the node level, based on the formalism of network
controllability. In section 4, instead, we describe a heuristic
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FIGURE 2 | Cascades of firms leaving a sample network of N = 15 without any network intervention. The position of the nodes is fixed and their size proportional to

their current in-degree. Firms colored in gray will leave the network in the next time step T. Parameters: γ = 0.5, b = 0.2, c = 0.06, xthr = 0.05, gthr = 0.8, p = 0.1.

approach that smartly combines interventions at the node and
network level to achieve our aim.We validate all our scenarios by
means of computer simulations.

We start with addressing the node level. Here, the decisions of
individual firms to leave is influenced via their knowledge stock
(Equation 1). A trivial approach would be to simply lower the
costs c of all firms, this way increasing their knowledge stock and
forcing them to stay. Another trivial variant would be to reduce
the probability p of firms to leave if their conditions (A) or (B) to
stay in the network, are no longer met. We do not follow these
trivial approaches which treat all firms equal. Instead, we want to
make use of an important feature that distinguishes firms, their
topological position in the collaboration network. This shall help
us to identify which firms should be subject to an intervention.

Large-scale empirical studies of R&D collaboration networks
[19] have shown that their topology is characterized by two
distinct features: (i) a very broad degree distribution and (ii)
a distinct core-periphery structure. Firms belonging to the core
are often hubs, i.e., they have more and denser connections
among each other, while firms in the periphery are only loosely
connected to the network (or even disconnected, which is not
considered here). Thus, node interventions could be targeted
at core firms, or at firms from the periphery. Examples for
these interventions have been already discussed in the literature

[26, 33], and their performance depends on many details both
regarding the interaction dynamics and the network topology.

In our simulation studies, we will use sample networks
exhibiting the mentioned topological properties. But instead of
testing all possible interventions, in this paper we only choose
two particular examples that combine information about the
topological position of firms and their knowledge stock, as
outlined in the following sections.

3.2. Identifying Driver Nodes
To decide which firms should be targeted by an intervention,
we choose the formalism of network controllability [23–25], a
research field at the intersection of complex networks and control
theory. It allows to identify a set of driver nodes, firms in our
case, which are then targeted by an intervention. Control means
that applying a control signal to the driver nodes will allow us to
drive the dynamics on the network to a preferred outcome, in our
case to values of knowledge stock that would prevent firms from
leaving the network.

The formalism of network controllability requires to know the
dynamics on the network, i.e., changes in the state variables of
the nodes. This is, in our case, given by the non-linear dynamics
of the knowledge stock of each firm (Equation 1). As long
as this dynamics can be linearized, the concept of structural
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controllability still applies. If a firm represents a driver node,
additionally a constant control signal ui is added to the dynamics
of Equation (1). This leaves us with the tasks to identify the set of
driver nodes and to determine the control signals ui such that the
dynamics of the whole network is driven toward the desired state,
which shows either (i) no, (ii) small, or (iii) delayed cascades.

To determine the driver nodes, we choose two different
approaches: (a) we identify all firms that belong to the 20% with
the highest knowledge stock xstati , and (b) we instead identify all
firms that belong to the 20%with the highest control contribution
Ci, a measure for the ability of firms to influence others, as
described below. These two different sets of driver nodes are
calculated on the initial network, i.e., before any firm left.

To apply ranking scheme (a), we have to calculate the xstati (0)
for all firms, which have non-zero values only if the network
contains cycles (see section 2.1). For a linear dynamics we could
simply obtain the stationary values from solving the eigenvalue
problem that makes use of the known adjacency matrix A

of the network. Unfortunately, the nonlinearities involved in
Equation (1) do not allow this procedure. Instead, for all time
steps T, including T = 0, we have to run the dynamics of
Equation (1) at the time scale t and wait until it converges.
Specifically, we have to resort on numerical procedures, such as
the standard lsoda FORTRAN ode solver by Linda R. Petzold and
Alan C. Hindmarsh, which is interfaced in most programming
languages. We used the R interface provided by the DeSolve R
library. The computational effort involved was the main reason
why we restrict ourselves to the simulation of relatively small
networks. Our main goal is to study the impact of network and
node interventions, which can be sufficiently demonstrated with
small networks.

Our ranking scheme (b) uses the values of control contribution
Ci of each firm. Here we only sketch the idea behind this measure,
the details are given in [34]. We first need to identify a minimum
set of driver nodes (MDS) required to control the whole network.
Noteworthy, a network of size N can be controlled by different
MDS that not always contain the same set of nodes. Thus, the
probability that a node i becomes part of an MDS is denoted
as P(Di), sometimes called control capacity Ki [35]. Each driver
node i in a MDS controls a non-overlapping part of Ni nodes
of the whole network. P(Ni) then denotes the probability that a
given node is part of the subnetwork controlled by node i. But
we are interested in the conditional probability P(Ni|Di) that
a given node is part of the subnetwork controlled by i given
that i is a driver node. This conditional probability can only be
obtained algorithmically as discussed in the mentioned approach
of structural controllability.

The upper bound of P(Ni|Di), normalized by the system size,
is called control range, Ri [36]. That is, it gives the maximum
relative size of the network controlled by i. Control contribution
Ci now combines these two different information: Ci = KiRi.
That means, Ci of node i captures the probability for any node
in a network to be controlled by node i joint with the probability
that i becomes a driver. A large value of Ci indicates a large impact
of the respective node on driving the whole network to a desired
state. For an illustrative calculation of control contribution Ci we
refer to [34].

It is worth noticing that control contribution Ci is not simply
correlated to other topological measures, such as node degree,
and thus indeed provides new information to characterize driver
nodes. Further, it was demonstrated on empirical and synthetic
networks that identifying top driver nodes by their control
contribution rather than by alternative measures such as control
range or control capacity, leads to much improved results for
network controllability [34].

If we compare the sets of driver nodes from the two different
ranking schemes, we note only a minor overlap in the chosen
firms. This is understandable because a higher knowledge stock
is positively correlated with the in-degree of firms, whereas
driver nodes chosen by their control contribution mostly have a
low in-degree.

3.3. Results of Computer Simulations
We illustrate the performance of our intervention scenarios by
means of agent-based computer simulations. These aremotivated
by the fact that our model involves two time scales: the network
structure changes at the time scale T, while the knowledge stock
xi(t) of each firm changes at the smaller time scale t. To calculate
from Equation (1) the stationary values xstati (T), we resort to
numerical integration of the set of ordinary differential equations,
as mentioned above.

In our first intervention scenario, we consider a larger number
Nd of driver nodes, hence, we also simulate a larger network,
N = 200. The set of driver nodes contains the top 20% of firms in
both ranking schemes discussed in section 3.2, i.e., Nd = 40. We
recall that the sets of drivers are determined based on the initial
network and then kept as drivers.

Because firms decide to leave the network if the conditions
(A) or (B) are met, the number of firms in the network can
only decrease. The systemic variable 1 − X(T) then gives us the
fraction of firms that remain in the network. It is of interest to us
whether interventions on the driver nodes are able to (i) prevent,
(ii) reduce, or (iii) delay a network breakdown. Our reference case
is a scenario without any node interventions.

Whether or nor cascades occur depends, in addition to the
network topology, also on the parameters of the model. We recall
that in particular the two thresholds xthr and qthr determine the
conditions (A) and (B) under which firms decide to leave the
network. Further, their knowledge stock and knowledge growth
depends on the parameters γ , b and c. All these parameters also
impact the control signal ui that is needed for the driver nodes to
prevent firms from leaving the network.

For our first intervention scenario, we have chosen ui(T) ≡
u(T) = 0.1c 2[X(T) − 0.05]. That means the intervention is
the same for all driver nodes and it is rather small, only 10% of
the cost factor c. Precisely, firms acting as driver nodes still bear
90% of the costs applied to all firms. This is far from a scenario
where firms are paid for staying in the network. Further, this
reduction of the costs is not applied continuously to all driver
nodes at all times. The Heaviside function 2[x] ensures that
the intervention takes place only if the cascade of firms leaving
exceeds 5%, i.e., X(T) ≥ 0.05. This takes into account that,
in real-world scenarios, there may be a delay in implementing
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FIGURE 3 | Fraction of firms remaining in the network, 1− X (T ) over time T for

different interventions. Driver nodes are chosen from firms with the highest

initial knowledge stock (black) or with the highest initial control contribution

(gray). Reference case: no node interventions (blue). Parameters: γ = 0.5, b =
0.2, c = 0.06, p = 0.1.

interventions and that it may take time for managers to realize
the risk of a potential network crash.

The threshold of 5% is not independent of the probability p
that a firm indeed leaves the network if either conditions (A)
or (B) are met. Smaller values of p result in smaller cascades
at a given time T, and therefore slow down the process. We
emphasize that this way we do not prevent cascades. If the
conditions (A) or (B) are not met, a firm will not stay in
the network, but it may not leave immediately. Thus the time
scale of the cascade is impacted such that, hopefully, the node
intervention occurs in time.

Our choice of parameters shall prevent us from simulating
trivial scenarios. Obviously, we can always prevent cascades with
(a) a very high level of u and (b) a continuous intervention at
driver nodes. This would immediately finish the paper. But we
are more interested to learn if modest interventions, i.e., small
control signals placed at critical times and not continuously,
would be able to prevent a network breakdown. That is why
the parameters are chosen such that without interventions a
considerable fraction of firms would leave.

Typical results of our node interventions are shown in
Figure 3. Here we use a fixed time horizon, i.e., Tmax = T =
100, i.e., we are only interested in the system dynamics during
that given period. This time horizon would, for example, be
sufficient for managers to respond to the fact that collaborating
firms are leaving. We clearly see that, without any intervention,
firms are continuously leaving the network which ceases to exist
after a short time. Using driver nodes selected according to
their high knowledge stock (ranking scheme a) can considerably
improve the situation because large cascades are delayed. They
are, however, not prevented. But if driver nodes are chosen
according to their control contribution, cascades can be also
prevented, at least for the chosen time horizon T =100.

The interactions of firms and the emerging cascades follow
a deterministic dynamics. But there are random influences in
the way the initial network is generated. For a network of size
N, firms randomly connect to N − 1 other firms with a certain
probability q. The topology obtained this way also impacts the
cascade dynamics. In order to account for this, we have run 100

simulations to find out, when the majority of firms have left, i.e.,

from each run we determine T̂ from the condition 1−X(T̂) ≤ 0.5
and then average over T̂.

Our results show that, without any intervention, the average

value is T̂av
no = 36.7, but the median is T̂md

no = 17. That means in

half of all cases T̂ was smaller or equal to only 17, which points to
a rather left skew distribution and a fast breakdown.

With our interventions, we are able to considerably mitigate
this dynamics. Using control contribution as the best ranking

scheme, consistently, the average value increases by 1T̂av
cc = 40.1

compared to the case of no interventions, i.e., it doubles. More
interesting, the median strongly increases, and in more than half
of the runs the maximum time horizon T = 100 is reached.
We used a one-sided Wilcoxon rank sum test with continuity
correction for 100 observations, to show that this improvement
is statistically significant (p-value≈ 5.6e− 15).

Using knowledge stock as the ranking scheme for driver nodes
also delays large cascades significantly compared to the case
without interventions (p-value ≈ 1.86e − 12). But both the
average and the median values are slightly smaller than with
control contribution as ranking scheme. At the same time, we
note that the differences between the two ranking schemes is
not really significant (p-value = 0.092). Taking into account the
considerable effort in computing the initial control contribution
Ci(0) for all firms, we could argue that this effort does not pay off,
at least not for the given set of parameters.

Thus, the main difference in mitigating cascades is between
no intervention and intervention. For both ranking schemes, the
total size of the cascades becomes significantly smaller, i.e., more
firms remain in the network, and the occurrence of cascades is
also delayed. That means, while we cannot completely prevent
cascades of firms leaving, given our set of parameters, we can
still reach the aim of our interventions, namely to reduce and to
delay them.

4. A HEURISTIC APPROACH TO
INTERVENTIONS

4.1. Combining Node Level and Network
Level Interventions
While the formal approach to node interventions was quite
successful, as illustrated above, it also has a number of drawbacks.
Cascades were only reduced and delayed, therefore the number of
firms in the network necessarily decayed over time. Further, the
intervention had to target a larger number of firms. This implies
a considerable effort because interventions are costly. First of all,
in a real economic network we need to get access to the firms we
want to use as driver nodes, and secondly, the control signal itself
is also costly. We remind that u is used to lower the costs of those
firms that act as driver nodes.

Thus, we would like to have an intervention scenario that uses
only a small number of drivers, ideally only one firm, and that
compensates for the loss of firms from cascades that could not
be prevented. Such a scenario is laid out in the following, and
it combines interventions both on the node and on the network
level. We call this intervention heuristic because it is not derived
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in a formal manner but based on intuition and experience. As we
will show, it works surprisingly well.

We start by describing the intervention on the network level,
or systemic level, which shall be used to compensate for the
loss of firms. Here, we consider an instant replacement of firms
leaving, such that the total number of firms, N, is kept constant.
The new firms create links to randomly chosen partners with
a small probability q, hence the expected number of new links
is roughly N(T)q, where N(T) = N − Nex(T) is the number
of firms in the network after Nex(T) firms left at time T. The
random choice of partners is justified by the fact that newcomers
do not have complete knowledge about all established firms and
their connections.

With this entry-exit dynamics the network topology
continuously changes at time scale T. We recall that it has
changed already in the first intervention scenario because of
firms leaving the network. This has lead to a decreasing number
of nodes and links. Now, instead, we have approximately a
constant number of nodes and links, but a more pronounced
rewiring of the topology resulting from the combined entry and
exit of firms.

Interestingly, the fact that a loss of firms is always
compensated does not imply that large cascades of firms leaving
are prevented. A random addition of new firms does not
guarantee that these firms are also well-integrated in the network,
therefore they may leave rather soon. So, what is the advantage of
this network intervention? It boosts the dynamics of the whole
network and occasionally leads to improvements. In fact, firms
leaving may open up chances for new firms connecting to the
network, and this way generating a better knowledge transfer.
Therefore, we keep the random replacement of firms leaving as
one element of our intervention scenario, and call it the network
intervention. Further, to ensure a continuous network dynamics,
we will replace the firm with the lowest xstati (T) even in the rare
case that no firm has decided to leave.

We emphasize that the network intervention does not imply
any targeted control of firms. Instead, it ensures that the network
can constantly evolve on a time scale T. We will later test its
impact by comparing our combination of network intervention
and node intervention with the previous scenario, the targeted
intervention ofmany firms without network intervention.

4.2. Targeting One Firm
According to the network intervention, firms that leave the
network at time step T are replaced by new firms that randomly
link to existing firms with a small probability q. This scenario
ensures a continuing development both of the network and the
knowledge stock of firms. But occasionally it can happen that no
firm would decide to leave the network, given the conditions (A)
and (B). Then, according to the network intervention, we would
replace the firmwith the lowest knowledge stock xstati (T) by a new
firm that randomly connects to the network, to keep the system
dynamics going.

We now propose our node intervention: instead of forcing the
firm with the lowest knowledge stock to leave the network, we
force a specific firm which we call firm 1, to leave the network,
with probability p = 1. We choose as firm 1 a firm that initially

belongs to the core of the network. This firm is then replaced by
a new firm 1. In case the new firm 1 may no longer be part of the
core, we will not apply our node intervention to firm 1 unless it
becomes part of the core of the network, again.

This intervention approach sounds very odd, as our aim is
to prevent cascades. Firms located at the core of the network
have a higher knowledge stock and are often involved in cycles.
Therefore their impact on the cascade dynamics is expected to be
even larger. This raises two questions. Are we able to “sacrifice”
a core firm without enforcing a large cascade? The answer is yes,
and it will be illustrated in the small example below. The second
and most obvious question is whether such an intervention
approach is indeed able to prevent large cascades of firms leaving.
The answer is yes, again, although it is quite counter-intuitive.
But it is known already from the forest firemodel that small forest
fires have the ability to prevent large forest fires [37]. Therefore,
it makes sense, from time to time, to remove a specific firm from
the network in an ordered and controlled procedure, to avoid
situations in which large cascades can happen.

To let firm 1 leave the network implies an intervention that
brings the knowledge stock of firm 1 below the threshold. We
achieve our goal by simply increasing the cost c of only this firm,
i.e., c ≡ c + u1δ1,i. The Kronecker delta is δ1,i = 1 only if i = 1
and 0 otherwise. The critical level of u1 is defined by the condition
xstat1 (T) − xthr < 0, i.e., u1 depends on the current network, but
only needs to be chosen sufficiently large.

4.2.1. An Example
The complexity of our model results from the fact that the
network of firms changes on a time scale T, which impacts
the possible outcome of the stationary knowledge stocks of all
firms. Therefore, we have to resort to numerical investigations.
However, for the simple case of only two firms, we are able
to provide analytical insights which shall demonstrate that this
intervention is indeed able to drive the network dynamics to
different states.

Let us assume two firms 1 and 2, where firm 1 is subject of
the targeted intervention, as assumed above. Each firm has only
one directed link toward the other firm, and the dynamics of their
knowledge stocks follows from Equation (1):

dx1(t)

dt
=− γ x1(t)+ b x2(t)− [c+ u1]x

2
1(t)

dx2(t)

dt
=− γ x2(t)+ b x1(t)− c x22(t) (2)

If u1 = 0, the stationary knowledge stock of both firms is given as

xstat1 = xstat2 = b− γ

c
(3)

If u1 6= 0, then instead we find for the stationary values

xstat1 = Q ; xstat2 = Z

b
; Z = [c+ u1]Q

2 + γQ (4)

where Q is a quite involved function of the parameters b, c,
u1, and γ, which we print in Appendix A.1. From Equation (4)
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FIGURE 4 | Phase plot illustrating the dynamics of the knowledge stocks x1(t),

x2(t) of two firms Equation (2), (red dashed line) u1 ≡ 0, (black solid line)

u1 = 0.2.

we find that (i) the values of both xstat1 and xstat2 depend on the
intervention u1 and (ii) that these values are decreasing functions
of u1. That means, for both firms:

xstat1 (u1 > 0) < xstat1 (u1 < 0) ; xstat2 (u1 > 0) < xstat2 (u1 < 0)
(5)

The first inequality is understandable since a negative value of u1
would decrease the cost of firm 1, and hence increase its stationary
knowledge stock. Because the influence of the intervention u1
propagates from firm 1 to firm 2, we also find an increased
stationary knowledge stock for firm 2. Still, the influence of u1
on firm 1 is always stronger:

xstat1 (u1 > 0) < xstat2 (u1 > 0) ; xstat2 (u1 < 0) > xstat1 (u1 < 0)
(6)

From Equation (6), we see that for a given threshold xthr > 0,
there exist a critical level ũ1 > 0 such that

xstat1 (ũ1) < xthr < xstat2 (ũ1). (7)

This is proven in a Theorem presented in the Appendix. That
means we can always find a critical level ũ1 for the intervention
such that firm 1 would leave the network, but firm 2 would stay
in the network, even though it is impacted by the intervention
applied to firm 1.

We illustrate the impact of the intervention on firm 1 in
Figure 4. It shows the dynamics of the knowledge stock of the two
firms with and without intervention by means of two trajectories
in a so-called phase plot, (x, y) ≡ (x1, x2). Both firms initially
have a knowledge stock above the threshold given by xthr = 1.6.

The initial condition is marked by the black dot. Without any
intervention, the knowledge stock of both firms would evolve
along the dashed red line to the stationary solution marked by
the blue cross. The vector field shown indicates this dynamics.
However, with an intervention of firm 1, i.e., u1 = 0.2, we are
able to drive the dynamics such that it follows the black line
and ends up in a stationary solution where xstat1 < xthr, while

xstat2 > xthr, indicated by the blue dot. This demonstrates that
our intervention to “sacrifice” firm 1, i.e., to force it to leave,
indeed works because it will not, at the same time, causes the
other firm to leave. Because there is no simple induction from
the case of two firms to the case of N firms, we will have to show
the efficiency of the heuristic approach by means of computer
simulations, presented in the following.

4.3. Results of Computer Simulations
To illustrate our heuristic approach of combining network
interventions and node interventions we choose a rather small
network with N = 20. Its evolution is studied over very long
time T , to check the robustness of the system state achieved by
our sinterventions.

Figure 5 shows the network from one run of our simulations,
at three consecutive time steps. For the decision of firms to leave
we apply condition (A) and a leaving probability p = 1. The
color code indicates the stationary knowledge stock of each firm.
Light blue means that firms have a value xstati (T) lower than

the threshold xthr and thus will leave the network immediately.
According to the network intervention, they are replaced by new
firms that randomly connect to the network. This part of our
intervention scenario is applied at every time step T.

Until T = 250, there were always one or more firms with a
low knowledge stock that decided to leave. At T = 251, Firm
1, which was already initially identified as a node from the core
of the network, is targeted with an intervention for the first
time. The intervals at which such a node intervention becomes
necessary fluctuate considerably. Averaging over a long time and
many simulations, we find that this intervention happened about
every 11 time steps, i.e., in about 11% of network interventions.
The control signal forces firm 1 to leave the network, and a
new firm 1 enters and randomly links itself to the existing firms.
This changes the adjacency matrix and results in new stationary
knowledge stocks for all firms. The subsequent snapshot at the
next time step is shown in Figure 5C. We note that “sacrificing”
firm 1 has resulted in a network with an increased periphery.

What have we gained from this node intervention? First of
all, we have ensured that the network dynamics continues, which
always has the potential to also reach states of better knowledge
exchange between firms. Secondly, we have generated a small
cascade of firms leaving.While this seems to be unnecessary at the
current point, it may become important at a later time because it
may prevent a larger cascade in the future.

To demonstrate this effect, we have plotted, from a single
run, the fraction of firms remaining in the network, 1 − X(T),
over time T for the cases of (a) only network intervention and
(b) combined network and node intervention. The results are
shown in Figures 6A,B. We recall that without the network
intervention, we would observe a cascade of firms leaving
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FIGURE 5 | Network evolution with a targeted intervention of firm 1 (always circled in red). Firms with xstati (0) < xthr (condition A) (marked in light blue) will leave the

network. (A) T = 250, (B) T = 250, and (C) T = 252.

FIGURE 6 | Fraction of firms remaining in the network, 1− X (T ), over time T for different interventions: (A) network intervention only, (B) network interventions and

node interventions combined.

such that the system dynamics ends rather soon (see also
Figure 2). With only the network intervention, we can prolong
the existence of the network considerably as Figure 6A shows.
There are always cascades of firms leaving with varying size.
But it takes a considerable long time before the network breaks
down completely. Hence, we can conclude that the network
intervention alone already allows to delay the breakdown for a
time T .

This finding can be contrasted with Figure 6B, which shows
that a combination of network and node interventions is in
fact able to prevent the breakdown of the network, completely.
Even for a very long time horizon T ≃ 50 × 103, we do
not notice larger cascades. We remind that cascades always
happen at every time step T, but their size is small in case of
combined interventions.

Again, to account for random effects in generating the

networks we have run 100 simulations to obtain values for T̂,
which is the time where the cascade has caused more than 50% of
the firms leaving. For the scenario with combined interventions,

we always find that T̂ > T , i.e., there is no breakdown
observed. But it is still interesting to note the impact of network

interventions only. There we find an average value for T̂ of
about 13,000 time steps, but a median of about 1,300 time

steps only. So, again we have a left skew distribution. While
there is an improvement of delaying cascades in comparison
to the case of no intervention, we can argue that because of
the rather small median, this improvement is not large, in
particular not if we compare it to the improvement from the
combined interventions.

To check the robustness of our results, we have also carried
out simulations with N = 250 nodes, a time horizon T ≃
10 × 103 time steps, and 50 runs. They confirm the findings
discussed above. For the combined interventions, we do not
observe a breakdown for the given time horizon. Considering
network interventions only, we find that both the average and the
median are about the same, so instead of a left skew distribution
we have a more symmetric one. With 7,100, their value is close
to the chosen time horizon. That means, a significant number
of runs does not show large cascades during this period. This
suggests that network interventions alone become quite efficient
for larger networks.

5. CONCLUSIONS

Interventions are seen as one important possibility to improve
the state of a system. To quantify what kind of interventions
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would lead to an “improvement” requires an understanding of
both the structure and the dynamics of the target system. In
this paper, we focus on a collaboration network of firms which
exchange knowledge to increase their knowledge stock. Such
R&D networks play a vital role in innovation economics and are
therefore already studied empirically and theoretically [19, 20, 29,
31]. Hence, our investigations can build on establishedmodels for
the dynamics of knowledge stock and knowledge exchange. Less
studied, so far, are possible intervention scenarios to improve
knowledge exchange.

In our paper, we have addressed one particular challenge for
the R&D network, namely the fact that firms terminate their
collaborations and leave the R&D network if their expectations
about knowledge exchange are not met. This is a rational
behavior because collaborations are costly, thus the knowledge
gain has to overcome some critical threshold. If firms decide
to leave the network, this negatively impacts their collaborators
and may lead to cascades of firms leaving. With our different
intervention scenarios, we want to mitigate this situation.
Specifically, to model the decision to leave we have extended
previous works by considering not only the firm’s knowledge
stock, but also their knowledge growth, i.e., their expectations
about the development.

Our intervention scenarios follow a bottom-up approach.
That means, instead of improving the situation of all firms
equally by changing some global conditions, we try to identify
a smaller set of firms that should be incentivized. Such firms are
called driver nodes in network controllability. Formal approaches
to identify minimal sets of driver nodes exist [23, 25, 34–36].
We apply them here for the case of a non-linear dynamics of
knowledge growth.

Further, we compare two different ranking schemes for driver
nodes. In one case, we choose the 20% of firms with the
highest knowledge stock, which are mostly high-degree nodes,
in the other case we choose instead the 20% of firms with
the highest control contribution, which are often low-degree
nodes. Control contribution is a novel node level measure [34]
that considers the probability of a node to become a driver
node and the size of the subnetwork that is controlled by
this node.

If a cascade of firms leaving is about to start, i.e., if 5%
of firms already left, driver nodes are incentivized to stay in
the network, by lowering their costs by 10%. We emphasize
that this is a comparably small intervention, applied to only
a small subset of 20% of all firms and only at critical times.
But this intervention is sufficient to considerably delay the
emergence of a cascade of firms leaving, as the results in
Figure 3 demonstrates. We also find that driver nodes chosen for
their high control contribution are more effective in preventing
cascades of firms leaving.

Our second intervention scenario uses a different approach,
by combining interventions on the node and the network level.
Network interventions are not targeted at specific firms. Instead,
replacing firms that left by new ones that randomly connect
to the remaining firms allows a continuous dynamics of the
network. This takes into account that random changes can also
lead to an improvement. In situations where not much is to

lose because cascades already happen, it is certainly worth to
be considered.

This intervention alone, however, is not able to prevent
cascades of firms leaving, it can only considerably delay
them. The reason comes from the fact that new firms are
usually not well integrated in the network. Therefore, to
improve the situation, we also use a node intervention, but
only targeted at one driver node and only at about 10%
of all time steps. This firm is forced to leave the network,
i.e., instead of reducing the costs, we increase them, for
only this firm, such that it is no longer attractive for the
firm to stay.

While this intervention seems to be counter-intuitive, it
indeed stabilizes the network such that large cascades are
prevented, as Figure 6 illustrates. That means, the controlled
removal of one firm, chosen the right way at the right time,
sustains the network of knowledge transfer if it is combined
with the network intervention. The logic of this combined
intervention is somewhat similar to the mentioned wildfire
prevention [37]. Allowing small wildfires from time to time
reduces the risk of a large wildfire considerably. Here, we
demonstrate that this logic can be successfully transferred also
to an economic context.

Comparing the two different intervention scenarios discussed
in this paper, we point to a number of commonalities and
differences. First of all, both scenarios are successful, if we
consider our minimal aim to prevent large cascades for a certain
time horizon T . That means, we could buy considerable time
to further improve the situation by, e.g., management or policy
decisions. The maximal aim, namely to prevent large cascades
completely, can be also achieved in the second scenario. But
from an economic viewpoint, this might not even be desirable.
We remind on Schumpeter’s idea of “creative destruction” as
an important ingredient of innovation dynamics and economic
progress [38]. From this perspective, cascades of firms leaving
the collaboration network continuously test the stability, or
the viability, of the knowledge transfer system. Preventing
the breakdown of an inefficient economic system might have
advantages on very short time scales, but definitely hamper its
long-term evolution.

A major difference of both intervention scenarios is related
to costs. In the first scenario, there is the cost of identifying
and accessing the driver nodes, which is not included in our
model. But it is obvious that firms with a high knowledge
stock, which are mostly nodes with a high degree, are likely
more difficult to access and to influence. Then, there is the
cost of incentivizing the driver nodes, by lowering their costs,
which has to be multiplied by the number of driver nodes.
Even if the incentives are small, they can sum up to a
considerable amount.

In the second scenario, on the other hand, the intervention
is not to reduce the costs of the target firm, but to increase it.
Additionally, only one firm needs to be controlled. The network
intervention, which is an important part of the second scenario,
is not associated with costs for incentives. Instead, the costs
involved for the new firms to establish links to the network are
covered by these firms.
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Eventually, the main reason why the different intervention
scenarios have any impact on the knowledge transfer
between firms results from the interaction dynamics. Both
the positive (reducing the costs) or the negative (increasing
the costs) interventions not only impact the knowledge
stock of the targeted firms. Because of the network effects
underlying the knowledge production, these interventions
propagate to other firms and steer the evolution of the
whole system toward a desired system state. This state
is an emerging property of the system, characterized
by a larger robustness against cascades of firms leaving
the network.
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A. APPENDIX

A.1. Explicit Stationary Solutions
Here we provide the detailed expressions for the stationary
knowledge stocks of a network with only two firms 1,2. Their
dynamics was given in Equation (2) and their stationary solutions
in Equation (4), which we repeat here:

xstat1 = Q ; xstat2 = Z

b
; Z = [c+ u1]Q

2 + γQ

The functionQ reads explicitely:

Q =
3
√
k

3 3
√
2
[

−c3 − 2u1c2 − u21c
] +

2
(

γ c2 + γ u1c
)

3
[

−c3 − 2u1c2 − u21c
]

−
3
√
2
{

3
(

−cγ 2 − bcγ − bu1γ
) [

−c3 − 2u1c
2 − u21c

]

− 4
(

γ c2 + γ u1c
)2

}

3
[

−c3 − 2u1c2 − u21c
] 3
√
k

(A1)

with k given by:

k =− 27b3c6 − 2γ 3c6 + 9bγ 2c6 − 108b3u1c
5 − 6γ 3u1c

5

+ 36bγ 2u1c
5 − 162b3u21c

4 − 6γ 3u21c
4 + 54bγ 2u21c

4

− 108b3u31c
3 − 2γ 3u31c

3 + 36bγ 2u31c
3 − 27b3u41c

2

+ 9bγ 2u41c
2 +

√
m (A2)

andm given by:

m =4
{

3
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−cγ 2 − bcγ − bu1γ
) [

−c3 − 2u1c
2 − u21c
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−4
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γ c2 + γu1c
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+ 36bγ 2u31c
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2 + 9bγ 2u41c
2
}2

(A3)

A.2. Theorem for Controlling Two Firms
Equation (6) states that, given a threshold xthr > 0, we can
always find a critical value of the intervention ũ1 such that the
stationary knowledge stock of firm 2 (without intervention) is
above the threshold, while the knowledge stock of firm 1 (targeted
by the intervention) is below the threshold.We can formalize this
statement in a simple theorem.

Theorem 1. Let xthr > 0 be a threshold and xstati (u1) be the
stationary knowledge stocks of firms i ∈ {1, 2, } with a control
signal u ∈ R applied to firm 1. Then, as long as xthr ≤ xstat2 (0),
there is a value ũ ∈ R such that:

xstat1 (ũ) ≤ xthr ≤ xstat2 (ũ) . (A4)

In the following, we provide a sketch of its proof. There are
two possible cases:

xthr = xstat1 (0) = xstat2 (0)

xthr < xstat1 (0) = xstat2 (0)

The first case is trivial. Choosing ũ = 0 is the solution.
For the other case, we use the expressions given in
Equations (4) and (A1). With i ∈ {1, 2}, we can see
xstati (u) ∈

(

0, xstati (0)
]

as monotonously decreasing and
continuous functions of u ∈ [0,∞). Hence, they are also
bijective functions within this interval. According to Equation
(6), then, there exist a positive ũ such that Equation (A4)
is satisfied.
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