
entropy

Article

The Downside of Heterogeneity: How Established Relations
Counteract Systemic Adaptivity in Tasks Assignments

Giona Casiraghi * , Christian Zingg and Frank Schweitzer

����������
�������

Citation: Casiraghi, G.; Zingg, C.;

Schweitzer, F. The Downside of

Heterogeneity: How Established

Relations Counteract Systemic

Adaptivity in Tasks Assignments.

Entropy 2021, 23, 1677. https://

doi.org/10.3390/e23121677

Academic Editor: Krzysztof Malarz

Received: 21 November 2021

Accepted: 10 December 2021

Published: 14 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Management, Technology, and Economics, ETH Zürich, Weinbergstrasse 56/58,
8092 Zürich, Switzerland; czingg@ethz.ch (C.Z.); fschweitzer@ethz.ch (F.S.)
* Correspondence: gcasiraghi@ethz.ch

Abstract: We study the lock-in effect in a network of task assignments. Agents have a heterogeneous
fitness for solving tasks and can redistribute unfinished tasks to other agents. They learn over time to
whom to reassign tasks and preferably choose agents with higher fitness. A lock-in occurs if reassign-
ments can no longer adapt. Agents overwhelmed with tasks then fail, leading to failure cascades. We
find that the probability for lock-ins and systemic failures increase with the heterogeneity in fitness
values. To study this dependence, we use the Shannon entropy of the network of task assignments. A
detailed discussion links our findings to the problem of resilience and observations in social systems.

Keywords: resilience; systemic risk; failure cascades; entropy; adaptivity

1. Introduction

Imagine a world in which every task is solved right when it appears. Agents with
huge mental capacities and time resources would immediately execute whatever was
assigned to them. No unfinished tasks would pile up at their desks, no procrastination,
no delay in project management. A measure of systemic performance that monitors the
concentration of unfinished tasks would always be at its optimum.

Unfortunately, the real world is not like this, on the contrary. Miraculously, the work to
be done seems to pile up at the desks of some agents, bottlenecks emerge. Zanetti et al. [1]
show that these bottlenecks are not necessarily created by the least productive agents but,
in some circumstances, by the most productive ones. The reason for this miracle comes
from the underlying feedback. Agents that have proven to solve tasks assigned to them
very quickly in the past have a larger chance to get new tasks assigned [2]. Therefore, the
system “learns” to preferably consider those agents, this way overwhelming them with
new tasks. Surely, these overcommitted agents could redistribute such tasks themselves
to others. However, the problem is that those agents receiving the task may not be more
efficient and simply pass the assignment on to others. Therefore, instead of solving the task,
a cascade of subsequent assignments emerges. In the worst case, every agent redistributes
all tasks, resulting in a system where no task is solved anymore [3].

This quite abstract problem description usually resonates with the personal experience
of a broader audience, which has experienced similar situations already. Therefore, we do
not further illustrate the problem but go straight to the research question: Can a lack of
adaptivity in redistributing tasks lead to a system failure under certain conditions? More
precisely, we are interested in distinguishing dynamic regimes where the system can still
maintain its task solving ability from those where the system breaks down. This would
require us to also monitor the systemic state by a suitable measure—which turns out to be
Shannon’s information entropy [4] in our case.

In the following, we introduce the details of our agent-based model of task redis-
tribution. By means of computer simulations we find that the risk of failure cascades
increases with the heterogeneity in the agents’ fitness, i.e., their ability to solve tasks. This
results from the fact that agents learn to redistribute their unfinished tasks to those agents

Entropy 2021, 23, 1677. https://doi.org/10.3390/e23121677 https://www.mdpi.com/journal/entropy

https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-0233-5747
https://orcid.org/0000-0003-1674-7961
https://orcid.org/0000-0003-1551-6491
https://doi.org/10.3390/e23121677
https://doi.org/10.3390/e23121677
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/e23121677
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e23121677?type=check_update&version=1


Entropy 2021, 23, 1677 2 of 12

with a higher fitness, which then fail. Our findings are related to observations in an open
source software project. We further discuss their relevance for understanding systemic risk
and resilience.

2. Agent-Based Model of Task Redistribution

Agent fitness

In our agent-based model, each agent i = 1, . . . , N is characterised by a dynamic
variable xi(t), giving the number of tasks agent i still has to solve at time t in a continuous
approximation. A task is a discrete unit, but an agent solves it over a period of time, which
means that the agent solves a fraction of the remaining work at every t. Each agent i is
described by two time-independent attributes that quantify its ability to process tasks:
its fitness φi ∈ R+ and its performance τi ∈ [0, 1]. The performance τi denotes the rate
at which an agent i solves tasks. The larger τi, the faster an individual solves tasks. We
discuss in details the role of τi below. The fitness φi, instead, can be seen as some sort of
individual capacity to handle tasks and defines the heterogeneity of agents. Agents with
φi = 0 cannot handle any task, while agents with φi = ∞ can handle any number of tasks.

Agent failure

Agents will remain active as long as xi(t) ≤ φi, i.e., as long as they can still handle
tasks assigned to them. If xi(t) > φi, agents fail and become inactive. This is described by
an individual state variable [5]:

si(t) = Θ[xi(t)− φi] (1)

where Θ[z] is the Heaviside function, which returns 1 if z ≥ 0 and 0 otherwise. Note that,
according to Equation (1), for an agent with fitness φi ≤ 0 we have that si(t) = 1 for all
t ≥ 0. The state variable si can be used to calculate the fraction of failed agents as follows:

X(t) =
1
N ∑

i
si(t) (2)

X(t) can be used as a measure of systemic risk [5,6]. In that framework xi(t) is denoted
as susceptibility, reflecting the internal and external influences on the agent performance,
while φi is a threshold that expresses the level of internal stability, or “healthiness”, of an
agent. We will link our discussion back to issues of systemic risk at the end of this paper.

Obviously, the choice of φi to a large extent determines the success and failure on the
systemic level. To assign individual fitness values to agents, we sample them from a normal
distributionN (µ, σ), where µ = 50 is the mean value and σ is the standard deviation of the
distribution. In the following, we will vary σ, i.e., we increase or decrease the heterogeneity
of agents. We then study the impact of the heterogeneity σ on the system’s state in Section 3.

Task increase and decrease

Initially, each agent gets assigned a number of tasks xi(0) = 15 at t = 0. As long as
an agent is active, xi(t) ≤ φi, it can solve these tasks at the rate τi. In a continuous time
approximation the dynamics then reads [7]

dxi(t)
dt

= −τixi(t) (3)

This implies that tasks can be solved in parallel, and fractions of tasks remain. Because
an agent will solve tasks faster if it receives more tasks, the amount of unsolved tasks
decays exponentially. In this paper, we are interested in the impact of fitness heterogeneity.
Therefore, we set an equal performance for all agents, τi = τ = 0.01, in the simulations
described below.



Entropy 2021, 23, 1677 3 of 12

Tasks are not only solved. Each active agent also receives new tasks based on two
processes. The first one assumes the arrival of new tasks on each agent’s desk at constant
time intervals. The second one assumes a redistribution of unfinished tasks between agents.
To model these two processes, we consider a second discrete time scale T. Hence, our
multi-agent system is characterised by two time-scales, a shorter continuous one and a larger
discrete one. At the shorter time scale, t, agents process the assigned tasks, while at the
larger time scale T, the arrival of new tasks and the redistribution of unfinished ones occur.

Here, we consider that an agent can only redistribute full tasks. This is expressed by
the floor function, bxi(T)c, which separates the full tasks that can be distributed from those
tasks that the agent has already started to solve and that cannot be distributed anymore.
Precisely, at every time step T, agent i chooses to reassign some of its bxi(T)c uncompleted
tasks to other agents with a probability:

pi(T) =
bxi(T)c

φi
. (4)

This probability increases with the workload of agent i, scaled by its ability to solve
tasks. When a task is reassigned, bxi(T)c and pi(T) are updated instantaneously, i.e.,
they decrease with each task reassigned. With this assumption, we can describe the
process of choosing which tasks are reassigned at every discrete time step T as a sampling
without replacement. From an urn that contains exactly bxi(T)c green balls (which can
be redistributed), and φi − bxi(T)c red balls (which cannot be redistributed), we sample
bxi(T)c balls. The number of green balls in this sample gives the number Di(T) of tasks to
redistribute. Under these conditions, the total number of tasks to be redistributed Di(T)
follows a hypergeometric distribution. Thus, after every discrete time step T, the number
of tasks to solve drops according to the following equation:

xi(T + ε) = xi(T)− Di(T), (5)

where ε→ 0.

Task redistribution

To specify how agents redistribute their tasks to others, we make two assumptions.
First, agent i reassigns tasks to other agents j proportional to their fitness φj. This implies
that agents know all fitness values and can decide freely to whom to reassign their tasks.
Second, agents learn to whom they reassign tasks: the more an agent was chosen in the
past, the more likely it will be chosen again. A counter wij(t − ε) gives the number of
times i has reassigned a task to j in the past. Again, we assume that tasks are distributed
instantaneously and that wij is updated accordingly.

Hence, from the Di(T) full tasks that have to be redistributed, each one is reassigned
to an agent j 6= i with probability qij:

qij(t) ∼ φj ·
[
wij(t− ε) + 1

]
(6)

If all φj = φ are constant, the reassignment dynamics would be described by a simple
multivariate Polya urn process, distributed according to the standard Dirichlet-multinomial
distribution [8]. For heterogeneous φi, however, the dynamics is described by a generalised
multivariate Polya urn process and follows a form of modified Dirichlet-multinomial
distribution [9]. Investigating the exact form of this distribution is beyond the scope of
this paper.

Full dynamics

If agent i redistributes Di(T) full tasks at time T, then dij(T) is the number of tasks
that agent i assigns to j at time T. At the same time, agent i may receive tasks assigned



Entropy 2021, 23, 1677 4 of 12

from other agents, and at constant time intervals Tnew = 10 one new task arrives. Thus, for
the number of tasks xi(t) of agent i, we eventually specify the full dynamics:

dxi(t)
dt

=− τ
[
xi(t)− δt∈N · Di(t)

]
− δt∈N · Di(t)

+ δt∈N ·∑
j

dji(t) + δt modTnew=0 (7)

This dynamics merges the different processes at the continuous time scale t ∈ R+ and
the discrete time scale T ∈ N by using the expressions δa=b. They denote the Dirac delta
that is 1 when a = b and 0 otherwise. If xi(t) ≥ φi, agent i fails and redistributes all of its
tasks to others. An agent who fails can no longer receive or solve any tasks in the future.

Network of reassignments

The task redistribution dynamics generates a network of reassignments between all
agents. Specific paths i→ j→ · · · → k in this network can be reinforced over time because
of the memory effect: agents choose previously chosen agents with a higher probability.
Depending on the parameter values for this model, this can lead to lock-in effects. I.e.,
agents are no longer flexible enough to choose different agents for their reassignment. At
the systemic level, this results in a loss of adaptivity. Thus, the efficient redistribution of
tasks is hampered. This outcome can even lead to a failure of the system. If too many agents
are overwhelmed with tasks above their capacity, i.e., xi(t) ≥ φi, they fail and redistribute
all their tasks to the remaining active agents, possibly triggering a cascade of failures.

Hence, we can describe the systemic dynamics by monitoring the network of reassign-
ments over time. The nodes of this network represent the active agents, and the weighted
and directed links result from the reassignments. Because agents can freely choose to whom
they reassign tasks, the network can become fully connected over time. The weights wij(t)
can be used to define the entries Aij(t) of an adjacency matrix A(t), that characterizes this
network. These Aij(t) evolve over time, hence the network constantly adapts.

An illustration of this process is shown in Figure 1. We note that major changes in
the network occur only during the first few time steps. Then the network “locks in” to a
quasistationary state that cannot easily adapt. In the end, tasks are only solved by a small
number of agents that survived.

●

●●

●
●

●

●

●
●

●

(a)

●

●●

●

●

●

●

●

●

●

(b)

Figure 1. Cont.



Entropy 2021, 23, 1677 5 of 12

●

●●

●

●

●

●

●

●

●

(c)

●

●●

●
●

●

●

●

●

●

(d)

Figure 1. Network of task reassignments at different time steps: (a) t = 1, (b) t = 5, (c) t = 10, (d) t = 300.
The size of the nodes is proportional to the number of tasks xi(t) assigned to them, the size and gray
scale of links is proportional to the flow of tasks. Nodes in grey have failed. Parameters: N = 10,
σ = 8.5.

3. Results of Agent-Based Simulations
3.1. Evolution of Task Reassignments

Figure 1 has shown a large heterogeneity of the network, both in terms of the number of
tasks agents have to solve (size of the nodes) and the number of tasks redistributed (size and
color of links). The latter is captured in the different Aij(t) of the adjacency matrix A. Hence,
we propose to utilize this information for a systemic measure that reflects the evolution of
task reassignment. This measure is Shannon’s information entropy [4], defined as:

H(A) := − ∑
Aij∈A

Aij

∑Aij∈A
· log2

(
Aij

∑Aij∈A

)
, (8)

H(A) quantifies the heterogeneity of entries in the matrix. The maximum value for H(A) is
attained when all entries are identical. For a system of N agents, the theoretical maximum
value is given by

max{H(A)} :=
N(N − 1)

N2 log2

(
N2
)

, (9)

where the term N(N − 1) comes from the fact that the diagonal of the adjacency matrix
is always zero because an agent does not redistribute tasks to itself. Conversely, the
more heterogeneous the entries, the lower is the value of the corresponding information
entropy H(A).

Specifically, monitoring the dynamics of H(A(t)) allows us to characterize the extent
to which the system is in a lock-in state [10]. This state is reached if the interactions among
agents follow a fixed pattern, e.g., reassigned tasks will be always sent to the same agent.
The lower the information entropy, the higher is the degree of lock-in.

In Figure 2 we show the dynamics of the Shannon entropy for three exemplary
parameter values of σ. The corresponding network structures are shown in the lower
part of Figure 2. For σ = 0 we quickly observe an approximately stationary state because
the system does not lock-in. H(A) ≈ 6 is the maximum value for the given choice of
parameters. Because all agents have the same fitness, they eventually contribute equally
to solving the tasks. However, as the assignment network below for an intermediate time
indicates, the structure of the reassignments first has to be established. For σ = 9, we
observe a slow decrease in the Shannon entropy with little variation, after it has reached
its largest value close to the theoretical maximum. This corresponds to a partial lock-in



Entropy 2021, 23, 1677 6 of 12

of the system. We note that in this case the network is rather sparse, indicating a loss of
adaptivity in redistributing tasks.

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

3

4

5

6

0 125 250 375 500
t

H
(A

)

(a)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

3

4

5

6

0 125 250 375 500
t

H
(A

)

(b)

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

3

4

5

6

0 125 250 375 500
t

H
(A

)

(c)

● ●

●

●

●

●
●

●

●

●

(d)

● ●

●

●

●

●

●

●

●

●

(e)

● ●

●

●

●

●
●

●

●

●

(f)

Figure 2. (top row) Shannon Entropy H(A(t)) over time t for different σ: (left) σ = 0, (middle) σ = 9,
(right) σ = 16. The different colours are for three different runs, dashed lines are averages over 500
independent simulations. (bottom row) Reassignment networks from the respective curves above,
where t is indicated by the vertical dotted line.

The most interesting plot is the one for σ = 16. Different from the other plots, we
now see three very different curves for the entropy. They correspond to three possible
outcomes that can happen only for large heterogeneity. The most frequently observed
green curve again shows the considerable decrease of the Shannon entropy, after it has
reached its largest value. This indicates a partial lock-in, but stronger than for smaller σ.
Additionally, the violet curve illustrates the scenario of a complete failure. After the initial
maximum, the entropy sharply drops down to reach very low values. In this situation,
some agents become overwhelmed and fail, and therefore, their unfinished tasks have
to be redistributed to the remaining agents. This partially improves the situation: Even
with fewer agents, the task reassignment becomes better balanced, shown in the increasing
entropy. However after some time, other agents fail, which leads again to a redistribution
and an entropy increase. Eventually, the few remaining agents cannot handle all tasks and
also fail. At this point, the violet curve stops, because no agents are active anymore. This
can be seen as a failure cascade [5] that encompasses the whole system in the end. However
we emphasise that this cascade happens over quite a long time period, so it cannot be
simply reduced to a domino effect with immediate impact on other agents.

Additionally, the orange curve also leads to a steep decrease of the entropy, but then
illustrates a very different scenario. After the failure of some agents, the system finds a
better balance for redistributing the tasks, which even improves further over time. Hence,
compared to the two other curves, a sustainable and well balanced quasistationary state
has been obtained. We will continue this discussion in Section 4.3 when we refer to the
notion of resilience.

3.2. Impact of Heterogeneity

To further characterize the state of the system over time, we use the measure of
systemic risk, X(t), Equation (2), which gives the fraction of failed agents. Values X → 1
for long times indicate that the system has broken down. We are interested in studying



Entropy 2021, 23, 1677 7 of 12

how this failure depends on the heterogeneity of the agent fitness, expressed by σ. Figure 3
shows that for small σ the fraction of failed agents stays close to 0, i.e., the majority of
agents survives. However this fraction considerably increases if the heterogeneity becomes
larger, which demonstrates the negative role of σ for the survival of the system.

Remarkably, for large σ the fraction of failed agents follows a bimodal distribution (cf.
inset in Figure 3). This means for large σ either only a few agents fail or almost all of them
do. Partial losses between 50% and 85% almost never occur because the failure cascades,
and if they occur, in case of large heterogeneity, they become also large Note that, for large
values of σ there is a non-zero probability to observe fraction of failed agents larger that 0
at t = 0. However, this does not impact the results discussed here as these failed agents do
not considerably impact the dynamics. Hence, an increase of heterogeneity in the agents’
fitness values φi not only leads to a complete lock-in of the system, but also has the risk of
a complete system failure.

0%

25%

50%

75%

100%

0 5 10 15 20
σ

Fa
ile

d 
Ag

en
ts

0.02

0.04

0.06

0% 25% 50% 75% 100%
Failed Agents

de
ns

ity

0.00

Figure 3. The heatmap shows the estimated probability density of X(t) (obtained from a standard ker-
nel density estimation) dependent on σ. White corresponds to values of approximately 0, the darker
the color, the higher the density. Parameters: N = 100. Values are averaged over 500 simulations of
1000 time steps for each value of σ linearly spaced in [0, 22] (25,000,000 data points). Inset: Bimodal
probability density estimate of X(t) for the σ value indicated by the dotted line.

To further study the role of the heterogeneity parameter σ, in Figure 4 we plot a
heat-map of the average Shannon entropy over time. The darker the colour, the lower the
average value of the entropy, that is, the stronger the lock-in effect in the redistribution
network. We identify a threshold value around σ = 5, above which a system failure starts
to be observed. Below the threshold, the system is either in partial lock-in or does not
reach the lock-in at all. Above the threshold, i.e., for higher values of σ, the system reaches
complete lock-in, followed by the failure of agents. This happens the earlier the higher the
values of σ are.



Entropy 2021, 23, 1677 8 of 12

0

5

10

15

20

0 250 500 750
t

σ

Figure 4. Heat-map of the average Shannon entropy over time for different values of σ. Light colors
correspond to high entropy values, close to the theoretical maximum. dark colors to locked-in states.
Values are averaged over 500 simulations for values of σ between 0 and 22. Simulations run until all
agents fail or stop redistributing tasks.

4. Discussion
4.1. A Realistic Example

In this paper, we have provided a model of task reassignment. The underlying
feedback mechanism is learning: agents learn to reassign tasks they are not able or willing
to solve to other agents with higher fitness. Our model does not consider that those
reassignments can be rejected. Instead, agents can again forward these tasks to others
if they are not processed. If agents get too many tasks, they will eventually fail. The
probability for reassignment decreases with the agent’s fitness. Hence, in the end, most
tasks will pile up at the desks of those agents with the highest fitness.

We first want to address the question to what extent this is a realistic scenario. Here,
we refer to a case study by Zanetti et al. [1] about task assignments in the large-scale
Open Source Software (OSS) project GENTOO. Specialised communities for tasks like bug
handling are of particular importance for the success of such projects [11]. Therefore, the
management has to find efficient organisational structures for the division of labour [12,13],
even though these communities are, typically, highly heterogeneous in dedication and
skills [14]. Some developers only contribute a single time, while core-developers perform
the majority of work [15]. From an extensive analysis of the network of task assignments,
Zanetti et al. [16] found that over time developers in GENTOO tended to rely mainly on
a single central contributor who became responsible for handling most of the tasks. This
concentration, however, considerably reduced the resilience of the system against shocks.
Because everything depended on one central contributor, there was no redundancy in the
ability to handle tasks. This lack of redundancy exposed the whole project to a considerable
failure risk if this central contributor dropped out [17]. This did indeed happen when the
central contributor became overwhelmed by tasks and faced conflicts originating from the
task reassignment [1].

In Figure 5, we show the network of task assignments at different stages of the
GENTOO project. In an early phase, tasks were broadly distributed between a core of active
developers and a large periphery of less active ones. As the number of tasks has grown
considerably, in the second stage, we see that the system almost dissolves into two groups,
indicated by the two large network components. These components are mainly connected
only by the central contributor which makes the system prone to failure because the star-
like network structure [1]. Thus, after the central contributor left, the system broke down
and had to reorganise. The result of this adaptation process is shown in the third phase.
The most important node now represents a software, BUGWRANGLER. It helped achieve
a much more balanced task assignment, and a single contributor no longer dominates
the system.



Entropy 2021, 23, 1677 9 of 12

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●● ●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●●

●

●●

●

●●●

●

●

●
●

●●●
●●

●
●●

(a) 2003-12

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●
● ●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
● ●

●
●
●

●

●●●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●
●

(b) 2007-09

●
●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●●● ●

●

●●

● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●● ●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●●
●

●

●

(c) 2012-04

Figure 5. Snapshots of a partial developer network from the OSS project GENTOO. Data is redrawn
from [1]. The size of the nodes is proportional to the number of tasks assigned.

From this real-world case study, our model can capture the concentration of tasks
in very few individuals, which are the ones with the highest fitness, and the resulting
breakdown after they become overloaded. Hence, our model can shed new light on the
conditions under which such vulnerable states appear. Based on our modelling insights,
we argue that the GENTOO project described in [1] suffered from a lock-in effect that led
to its breakdown. Lock-in means that the redistribution of tasks was constrained by its
previous history, dominated by the activities of the central contributor. Therefore, the
system could not respond to necessary changes anymore. The recovery process became
only possible after the central contributor left and most of the established relations broke
down. While we have seen that our model also allows for scenarios of obtaining a much
better redistribution balance (see Figure 2 right), we do not claim that the recovery of the
GENTOO project is sufficiently captured. For GENTOO, the last stage of reorganization and
adaptation shown in Figure 5c also relied on additional resources (manpower, software).

4.2. Systemic Risk

The model we have proposed has much in common with other models of systemic risk,
but also some remarkable differences that we want to discuss now. Systemic risk denotes
the risk that a large part of the system fails [5]. It can occur because of extreme shocks that
destroy the system but also because the failure of a few agents is amplified [18–20]. To
understand the latter case, one has to move from estimating the probabilities of rare events
to modelling (i) agents’ interactions and (ii) their internal dynamics. Agent-based models are
best suited for that, in particular in combination with network models [7].

Our model falls into the class of load redistribution models [5,6,21,22]. They assume
that a failing agent redistributes its load, i.e., the unfinished tasks, equally to its neighbours.
Because their load increases, these agents have a higher probability of failing. Hence, a
failure cascade emerges, which could stop after some steps, but more often accelerates. This
is because redistribution models capture a double amplification: more and more agents fail
and distribute their load to fewer and fewer agents that are still active [23].

Our model deviates from this outline in different respects.

1. In our case, agents continuously redistribute tasks, not only if they fail.
2. In our model, agents do not equally redistribute their tasks. Instead, the number of

tasks redistributed at each time step follows a probability distribution that combines
agent features, i.e., all their fitness values and the history of previous reassignments.

3. Our model considers directed and weighted links, where the weight dynamically adjusts
according to the history of assignments. i.e., instead of a static network topology, our
model uses an adaptive network [24] which reflects the learning process of agents.

4. As our model simulations illustrate, the failure of some agents not necessarily worsens
the situation but sometimes leads to a better redistribution of tasks, i.e., to an improved
system state. This is not reflected in most redistribution models, with the fibre



Entropy 2021, 23, 1677 10 of 12

bundle model [25,26] as a paragon, because only failing agents redistribute their load,
negatively impacting the stability of the system.

One main finding from our simulations is the bimodal distribution for the fraction of
failed agents (Figure 3). That means, in addition to the existence of small failure cascades,
there is a considerable risk that the whole system fails under the very same conditions. This
finding is at odds with known results for infinitely large systems, where a unimodal
distribution was obtained [22]. In this case the average size of a failure cascade is a good
predictor for the systemic risk. For a bimodal distribution, however, the average cascade
size is precisely not representative for the system behaviour. We have already explored that
the finite system size is the reason for the bimodal distribution [23]. This makes our findings
even more relevant as real systems are always finite. Therefore, we can rightly expect that
our system of task redistribution behaves differently from a theoretical limit case, also with
respect to the risk of a complete failure.

4.3. Conditions for Resilience

The focus of our paper is the impact of agents’ heterogeneity on the ability of the
system to adapt. The main finding states that a larger heterogeneity in the fitness distribu-
tion results in more substantial lock-in effects. In the case of low heterogeneity, however,
lock-ins do not occur. This finding is not trivial because the learning dynamics still tends to
drive the system into a lock-in state. Nevertheless, this effect is counterbalanced by the fact
that agents have more choices to redistribute their tasks because all agents have the same
fitness. These counterbalancing effects result in a higher adaptivity in the end.

Lock-in means that agents always reassign their tasks to the same agents as before.
Therefore, the reassignment network becomes very sparse, and the system loses its ability
to adapt. As we have shown, this does not mean the system will break down. However
a strong lock-in effect increases the chances that agents fail, which in turn increases the
chances that failure cascades evolve.

A system is said to be resilient if it can adapt to shocks and even recover from
them [27–29]. Thus, a loss of adaptivity undoubtedly impacts resilience, but it does not
explain why the system breaks down in some cases and in others not. In Figure 2c, we
have plotted three curves from different simulations with large heterogeneity. The green
curve shows the typical behaviour: agents learn to whom they reassign their tasks. The
lock-in is the result of this adaptation on the systemic level. There are no “shocks”, and
there is no recovery.

The violet and the orange curve, on the other hand, display such shocks: agents
fail, and the system has to respond by additionally redistributing their tasks. The failure
of agents first results in a low adaptivity of the system. Remarkably, the drop-down in
adaptivity is not caused by agents with low fitness, which may still be active, but by the loss
of agents with high fitness, which cannot be easily replaced because the system has “learned”
to rely on them. After this drop-down of adaptivity, we see a positive response for both the
orange and the violet curves first: the entropy increases again, which means the system
regains a better-balanced state, i.e., adapted to the shock. However, in the case of the violet
curve, this ability could not ensure the long-term existence of the system. The explanation
lies in the fact that resilience has two constituting components [30]: adaptivity only denotes
the dynamic dimension [31,32], while robustness denotes the structural dimension [29,33].
As the difference between the orange and the violet curve makes clear, an increase of
adaptivity alone is not sufficient [34,35]. There has to be also an increase in robustness.
This was the case for the scenario pictured in the orange curve. Precisely, the system not
only recovered from the shock but even obtained a balanced state better than most of the
typical simulations—and kept this over a long time.

Eventually, we note one of the most important differences to other models of risk and
resilience. In most systems, the failure cascade that characterises the breakdown starts
from agents with the smallest threshold, a measure of their “healthiness” or fitness. This
is understandable because they are “weak” and cannot handle a larger load. In our case,



Entropy 2021, 23, 1677 11 of 12

however, the failure cascade always starts from agents with higher fitness, considered
as “strong”. This seems to be counterintuitive but is in line with our real-world example
described in Section 4.1. The reason for this observation is the existing positive feedback:
Because other agents are perceived as “strong”, they get assigned most of the work. This
process is not counterbalanced by negative feedbacks that would stabilise the system, e.g.
through saturation or competition. Hence, tasks can pile up to a level where even the
strongest agents get overwhelmed and fail. The weaker agents, on the other hand, are
better protected because of their larger reassignment rate.

This links our investigation to other studies [36,37] that show how protecting a pe-
riphery of low performing agents can decrease the robustness of a system. In conclusion,
protecting the weakest agents does not prevent the breakdown—on the contrary, it enables
systemic failure by sacrificing the strongest instead [36,37]. However, without the stronger
agents, a recovery will become even more difficult because it can solely rely on the weak
agents [30]. Such insights, derived from a rather abstract model, have the potential to let us
rethink the distribution of tasks and resources in entirely unrelated systems. Protecting
the weak is a good idea, but to achieve an increase in resilience, it would be better to
understand the unintended consequences.

Author Contributions: Conceptualization, G.C. and F.S.; formal analysis, G.C. and F.S.; software,
G.C. and C.Z.; validation, G.C. and C.Z.; visualization, G.C. and C.Z.; writing—original draft, G.C.
and F.S.; writing—review and editing, G.C., C.Z. and F.S. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zanetti, M.S.; Scholtes, I.; Tessone, C.J.; Schweitzer, F. The rise and fall of a central contributor: Dynamics of social organization

and performance in the Gentoo community. In Proceedings of the CHASE/ICSE ’13 6th International Workshop on Cooperative
and Human Aspects of Software Engineering, San Francisco, CA, USA, 25 May 2013; pp. 49–56. [CrossRef]

2. Antosz, P.; Rembiasz, T.; Verhagen, H. Employee shirking and overworking: modelling the unintended consequences of work
organisation. Ergonomics 2020, 63, 997–1009. [CrossRef] [PubMed]

3. Malarz, K.; Kowalska-Styczeń, A.; Kułakowski, K. The working group performance modeled by a bi-layer cellular automaton.
Simulation 2016, 92, 179–193. [CrossRef]

4. Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [CrossRef]
5. Lorenz, J.; Battiston, S.; Schweitzer, F. Systemic risk in a unifying framework for cascading processes on networks. Eur. Phys. J. B

2009, 71, 441–460. [CrossRef]
6. Burkholz, R.; Schweitzer, F. A framework for cascade size calculations on random networks. Phys. Rev. E 2018, 97, 042312.

[CrossRef] [PubMed]
7. Schweitzer, F. The law of proportionate growth and its siblings: Applications in agent-based modeling of socio-economic

systems. In Complexity, Heterogeneity, and the Methods of Statistical Physics in Economics; Aoyama, H., Aruka, Y., Yoshikawa, H.,
Eds.; Springer: Tokyo, Japan, 2020; pp. 145–176.

8. Mahmoud, H. Pólya urn Models; CRC Press: Boca Raton, FL, USA, 2008.
9. Collevecchio, A.; Cotar, C.; LiCalzi, M. On a preferential attachment and generalized Pólya’s urn model. Ann. Appl. Probab. 2013,

23, 1219–1253. [CrossRef]
10. Zingg, C.; Casiraghi, G.; Vaccario, G.; Schweitzer, F. What Is the Entropy of a Social Organization? Entropy 2019, 21, 901.

[CrossRef]
11. Lamersdorf, A.; Munch, J.; Rombach, D. A Survey on the State of the Practice in Distributed Software Development: Criteria for

Task Allocation. In Proceedings of the 2009 Fourth IEEE International Conference on Global Software Engineering, Limerick,
Ireland, 13–16 July 2009; pp. 41–50. [CrossRef]

12. Scacchi, W. Understanding the requirements for developing open source software systems. IEE Proc. Softw. 2002, 149, 24–39.
[CrossRef]

13. Bolici, F.; Howison, J.; Crowston, K. Stigmergic coordination in FLOSS development teams: Integrating explicit and implicit
mechanisms. Cogn. Syst. Res. 2016, 38, 14–22. [CrossRef]

http://doi.org/10.1109/CHASE.2013.6614731
http://dx.doi.org/10.1080/00140139.2020.1744710
http://www.ncbi.nlm.nih.gov/pubmed/32188339
http://dx.doi.org/10.1177/0037549715614096
http://dx.doi.org/10.1002/j.1538-7305.1948.tb01338.x
http://dx.doi.org/10.1140/epjb/e2009-00347-4
http://dx.doi.org/10.1103/PhysRevE.97.042312
http://www.ncbi.nlm.nih.gov/pubmed/29758649
http://dx.doi.org/10.1214/12-AAP869
http://dx.doi.org/10.3390/e21090901
http://dx.doi.org/10.1109/ICGSE.2009.12
http://dx.doi.org/10.1049/ip-sen:20020202
http://dx.doi.org/10.1016/j.cogsys.2015.12.003


Entropy 2021, 23, 1677 12 of 12

14. Ehrlich, K.; Cataldo, M. All-for-One and One-for-All? A Multi-Level Analysis of Communication Patterns and Individual
Performance in Geographically Distributed Software Development. In Proceedings of the ACM 2012 Conference on Computer
Supported Cooperative Work, Seattle, WA, USA, 11–15 February 2012; ACM: New York, NY, USA, 2012; pp. 945–954. [CrossRef]

15. Goeminne, M.; Mens, T. Evidence for the Pareto principle in open source software activity. In Proceedings of the CEUR Workshop
Proceedings, Delft, The Netherlands, 31 October 2011; Volume 708, pp. 74–82.

16. Zanetti, M.S.; Sarigol, E.; Scholtes, I.; Tessone, C.J.; Schweitzer, F. A quantitative study of social organisation in open source
software communities. In Proceedings of the 2012 Imperial College Computing Student Workshop, Schloss Dagstuhl, London,
UK, 27–28 September 2012; Volume 28, pp. 116–122. [CrossRef]

17. Coelho, J.; Valente, M.T. Why Modern Open Source Projects Fail. In Proceedings of the 2017 11th Joint Meeting on Foundations
of Software Engineering, Paderborn, Germany, 4–8 September 2017; ACM: New York, NY, USA, 2017; pp. 186–196. [CrossRef]

18. Gleeson, J.P.; Cahalane, D.J. Seed size strongly affects cascades on random networks. Phys. Rev. E 2007, 75, 056103. [CrossRef]
[PubMed]

19. Payne, J.L.; Dodds, P.S.; Eppstein, M.J. Information cascades on degree-correlated random networks. Phys. Rev. E 2009, 80, 026125.
[CrossRef]

20. Hurd, T.R.; Gleeson, J.P. On Watts’ cascade model with random link weights. J. Complex Netw. 2013, 1, 25–43. [CrossRef]
21. Gleeson, J.P. Cascades on correlated and modular random networks. Phys. Rev. E 2008, 77, 046117. [CrossRef] [PubMed]
22. Watts, D.J. A simple model of global cascades on random networks. Proc. Natl. Acad. Sci. USA 2002, 99, 5766–5771. [CrossRef]

[PubMed]
23. Burkholz, R.; Herrmann, H.J.; Schweitzer, F. Explicit size distributions of failure cascades redefine systemic risk on finite networks.

Sci. Rep. 2018, 8, 6878. [CrossRef]
24. Gross, T.; Sayama, H. Adaptive Networks; Springer: Berlin, Germany, 2009.
25. Pradhan, S.; Hansen, A.; Chakrabarti, B.K. Failure processes in elastic fiber bundles. Rev. Mod. Phys. 2010, 82, 499. [CrossRef]
26. Daniels, H.E. The statistical theory of the strength of bundles of threads. I. Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 1945,

183, 405–435.
27. Holling, C.S. Resilience and Stability of Ecological Systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [CrossRef]
28. Sterbenz, J.P.G.; Hutchison, D.; Çetinkaya, E.K.; Jabbar, A.; Rohrer, J.P.; Schöller, M.; Smith, P. Resilience and survivability in

communication networks: Strategies, principles, and survey of disciplines. Comput. Netw. 2010, 54, 1245–1265. [CrossRef]
29. Hollnagel, E.; Woods, D.D.; Leveson, N. Resilience Engineering: Concepts and Precepts; Ashgate Publishing, Ltd.: Farnham, UK, 2007.
30. Schweitzer, F.; Casiraghi, G.; Tomasello, M.V.; Garcia, D. Fragile, Yet Resilient: Adaptive Decline in a Collaboration Network of

Firms. Front. Appl. Math. Stat. 2021, 7, 6. [CrossRef]
31. Walker, B.; Holling, C.S.; Carpenter, S.R.; Kinzig, A. Resilience, Adaptability and Transformability in Social-ecological Systems.

Ecol. Soc. 2004, 9, 2. [CrossRef]
32. Scheffer, M.; Carpenter, S.R.; Lenton, T.M.; Bascompte, J.; Brock, W.; Dakos, V.; Van de Koppel, J.; Van de Leemput, I.A.; Levin, S.A.;

Van Nes, E.H.; et al. Anticipating critical transitions. Science 2012, 338, 344–348. [CrossRef]
33. Kitano, H. Biological robustness. Nat. Rev. Genet. 2004, 5, 826–837. [CrossRef] [PubMed]
34. Sutcliffe, K.M.; Vogus, T.J. Organizing for resilience. Posit. Organ. Sch. Found. New Discip. 2003, 94, 110.
35. Lengnick-Hall, C.A.; Beck, T.E.; Lengnick-Hall, M.L. Developing a capacity for organizational resilience through strategic human

resource management. Hum. Resour. Manag. Rev. 2011, 21, 243–255. [CrossRef]
36. Casiraghi, G.; Schweitzer, F. Improving the Robustness of Online Social Networks: A Simulation Approach of Network

Interventions. Front. Robot. AI 2020, 7, 57. [CrossRef] [PubMed]
37. Schweitzer, F.; Zhang, Y.; Casiraghi, G. Intervention Scenarios to Enhance Knowledge Transfer in a Network of Firms. Front.

Phys. 2020, 8, 382. [CrossRef]

http://dx.doi.org/10.1145/2145204.2145345
http://dx.doi.org/10.4230/OASIcs.ICCSW.2012.116
http://dx.doi.org/10.1145/3106237.3106246
http://dx.doi.org/10.1103/PhysRevE.75.056103
http://www.ncbi.nlm.nih.gov/pubmed/17677129
http://dx.doi.org/10.1103/PhysRevE.80.026125
http://dx.doi.org/10.1093/comnet/cnt003
http://dx.doi.org/10.1103/PhysRevE.77.046117
http://www.ncbi.nlm.nih.gov/pubmed/18517700
http://dx.doi.org/10.1073/pnas.082090499
http://www.ncbi.nlm.nih.gov/pubmed/16578874
http://dx.doi.org/10.1038/s41598-018-25211-3
http://dx.doi.org/10.1103/RevModPhys.82.499
http://dx.doi.org/10.1146/annurev.es.04.110173.000245
http://dx.doi.org/10.1016/j.comnet.2010.03.005
http://dx.doi.org/10.3389/fams.2021.634006
http://dx.doi.org/10.5751/ES-00650-090205
http://dx.doi.org/10.1126/science.1225244
http://dx.doi.org/10.1038/nrg1471
http://www.ncbi.nlm.nih.gov/pubmed/15520792
http://dx.doi.org/10.1016/j.hrmr.2010.07.001
http://dx.doi.org/10.3389/frobt.2020.00057
http://www.ncbi.nlm.nih.gov/pubmed/33501225
http://dx.doi.org/10.3389/fphy.2020.00382

	Introduction
	Agent-Based Model of Task Redistribution
	Results of Agent-Based Simulations
	Evolution of Task Reassignments
	Impact of Heterogeneity

	Discussion
	A Realistic Example
	Systemic Risk
	Conditions for Resilience

	References

