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The dynamics of collaboration networks of firms follow a life cycle of growth and decline.
That does not imply they also become less resilient. Instead, declining collaboration
networks may still have the ability to mitigate shocks from firms leaving and to recover from
these losses by adapting to new partners. To demonstrate this, we analyze 21.500 R&D
collaborations of 14.500 firms in six different industrial sectors over 25 years. We calculate
time-dependent probabilities of firms leaving the network and simulate drop-out cascades
to determine the expected dynamics of decline. We then show that deviations from these
expectations result from the adaptivity of the network, which mitigates the decline. These
deviations can be used as a measure of network resilience.
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1 INTRODUCTION

Resilience denotes the ability of a system to withstand shocks and to recover from them [1, 2]. Hence,
it combines two different dimensions: robustness against shocks and adaptivity to overcome states
that result from a shock [3, 4]. Interestingly, most research has only focused on the first aspect,
robustness. Much less attention is paid to the second one, which is more difficult to quantify and to
forecast. Therefore, in this article we aim at better understanding the adaptive capacity of systems.

One reason for the biased research interest comes from the fact that robustness is strongly related
to concepts like stability which are easier to assess. However, if robustness or stability is used as a
synonym for resilience [5], the temporal aspects of recovery are neglected [6, 7]. To quote Abraham
Lincoln: “It’s not important how many times you fall, but how many times you get back up.” If we
want to improve the resilience of systems, the solution is not to simply avoid situations that may lead
to a breakdown, by increasing the robustness of a system [8]. Very often such breakdowns cannot be
avoided or even controlled [9, 10]. The real problem is how to enable systems to cope with these
situations and to recover from them [11, 12].

This requires us to develop a systemic view that takes the eigendynamics of a system into account
[13, 14]. To address this, we need an appropriate system representation. The complex systems
perspective assumes a large number of interacting system elements, denoted as agents. Such systems
can be visualized as complex networks in which agents are represented by nodes and their interactions
by links. In our research, we adopt this perspective to model collaboration networks in economics;
i.e., nodes represent firms and link their joint activities in research and development (R&D) [15, 16].

Similar to engineered systems, many social, economic, and biological systems follow a life cycle
[17, 18]. After an initial growth phase, one observes a period of maturity or saturation, which
eventually leads to the decline and the decommision of the system [19]. Also collaboration networks
between firms follow such a life cycle [20]. Maintaining collaborations is costly, but only through
collaborations firms have access to knowledge they do not develop in-house [21]. Hence, firms will
collaborate as long as they obtain a benefit from this. If the goal of the collaboration, e.g., patent
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development or knowledge exchange, is fulfilled, they will delete
the link to the respective partner. From the life cycle perspective,
the decay of the collaboration network is therefore not a sign of
weakness or malfunction, but a sign of a quasinatural, even
rational dynamics.

If one supposes that network growth indicates a positive and
network decline a negative development, this would imply that
shrinking networks are less resilient. With our study, we want to
challenge such a naïve argumentation. The title phrase “fragile,
yet resilient” summarizes our main finding that the system at
hand even in phases of decline has the ability to respond to this
development, by adaptation. This does not mean that the
collaboration system completely recovers. But it is interesting
to note that the decline can be stopped and the loss can be
mitigated. Such a development is most often overlooked, simply
because the observed dynamics is dominated by the global
(negative) trend. Therefore, our aim is to detect the adaptive
capability of the system and to separate it from the global trend,
this way quantifying the recovery potential.

2 THE COLLABORATION NETWORK OF
FIRMS

2.1 Data and Networks
Firms with a focus on research and development (R&D) activities
continuously establish new collaborations with other firms, to
exchange knowledge and to leverage synergies. Because firms
have to declare their R&D alliances, we have access to a large data
set of more than 14.500 firms and 21.500 collaborations over a
time interval of 25 years (1984–2009), covering six different
industrial sections, e.g., Pharmaceuticals or Computer
Hardware. The details of the data set are described in our
different publications [20, 22, 23]. Figure 1 shows an example
of such a collaboration network in two different years.

An empirical investigation of the evolution of these sectoral
collaboration networks has revealed a rise and fall dynamics, also
illustrated in Figure 1. Two periods in the evolution of these
collaboration networks have been distinguished: from 1984 to
1995, we see a steady growth of the networks, both with respect to

the number of firms and the number of links. From 1995 to 2009,
on the other hand, we observe that these networks continuously
shrink. This holds despite the mentioned fact that firms continue
to establish new alliances. But theses activities do not break the
declining trend.

2.2 Leaving Probability
In the following, we seek to quantify the tendency of firms to
leave. Our considerations start from the question why firms stay
in a collaboration network. As other economic actors, firms try to
maximize their utility, i.e., the difference between benefits and
costs. Hence, firms stay as long as their benefits exceed their costs.
But even if firms leave, they can still return to the network later to
start new R&D collaborations with the same or with other
partners.

While this dynamics seems reasonable, we have to overcome
the problem that there is only data available about the starting
date when firms establish a new alliance, but no data about the
ending date. Thus, we first need to estimate the life time of an
R&D alliance. This problem was solved in a subsequent study
[24]. We have estimated that the mean life time of an R&D
alliance is about 3 years. We build on this result here, assuming
that the life time of an alliance is randomly drawn from a normal
distribution with a mean of 3 years and a standard deviation of
1 year.

This life time estimation has enabled us to reconstruct the
evolution of the collaboration network as detailed in Refs. 20 and
22. We use the starting date of each alliance and the information
about its collaboration partners. Then, we sample a life time of the
alliance from the mentioned distribution to determine its ending
date, at which we remove all collaboration links related to that
alliance. The end of an alliance does not imply that firms leave the
collaboration network. In the meantime they may have used their
presence to establish new alliances with other firms. Only if firms
have no active alliances in a given year, they will leave. This
information is aggregated for each year t.

Once we know which firms stayed and which firms left, we
calculate the leaving probability p as follows. For each firm, we use
a time-dependent state variable, si(t) � 1 if firm i is present in
year t and si(t) � 0 if it is absent. The probability to leave is then
defined as pi(t) � p[si(t + 1) � 0|si(t) � 1]; i.e., it is the
probability that a firm present in year t is absent in the
following year. The probability to stay is 1 − pi(t).

Our aim in this article is to estimate how the leaving
probability pi depends on the benefits of a firm. We argue
that, given the aim of the collaboration is knowledge
exchange, the benefits of firm i crucially depend on its
number of active partners Na

i in the collaboration network.
We conjecture the better the firm’s embeddedness in the
network, i.e., the more active partners, the less the probability
to leave. To obtain a quantitative relation, we first measure, for
each year t, the number of active partners Na

i (t) of each firm
present in the network. Then, we determine for the same year its
leaving probability pi(t) as introduced above and define the
relation to the number of active partners as follows:

pi(t) � p[si(t + 1) � 0|si(t) � 1]∝ exp{α + βNa
i (t)}. (1)

FIGURE 1 | Network of R&D collaborations of firms in the sector
“Communications Equipment” in 1995 (left). The right plot shows how many
of the firms from 1995 are still present in 2003. The size of the nodes is
determined by their degree.
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As a reference, we first want to estimate p for the period of
network growth ending in 1995. Therefore we aggregate all data
for the period from 1984 to 1995 and then do a logistic regression
on the log odds (or logit), ln[p/(1 − p)] � α + βNa. The
regression results are shown in Figure 2 together with the
empirical leaving probabilities (yellow marks) for the six
different industrial sectors.

We clearly see the monotonous decrease of the leaving
probabilities with the number of active partners. The plotted
95% confidence intervals of the estimates indicate that the results
are indeed reliable. At the same time, we also notice the
differences between industrial sectors, in particular regarding
the number of active partners.

3 DYNAMIC MODELING OF CASCADES

3.1 Time-Dependent Leaving Probability
Our task is now to model the cascades of firms leaving the
collaboration network. We start from the network at its
maximum size in 1995 and only consider firms that are
present there in 1995, which we call the “class of 95” in the
following. If the total number of firms in the network is N tot(t)
and the number of firms remaining from the class of 95 isN(t), by
construction, in our reference year 1995 N � N tot. Afterward,
N(t) will decrease because of firms leaving, and the question is
how fast this decline happens.

Because we lack information about leaving dates, we have to
generate our empirical observations for the class of 95 from data
about their new alliances and about the life time of their
established alliances, as before. Firms that are no longer part
of any active alliance in a given year t are assumed to leave. This
way, we obtain reference data about N(t) that are plotted in
Figure 3 (yellow marks).

Now we have to compare these data with our results from
simulating the cascades. Instead of the information about active
alliances, we now consider the probabilities of firms to leave the
network. The estimated leaving probabilities p for the different
sectors shown in Figure 2 denote a lower bound because they
were obtained considering the growth phase of the network. To
simulate the decline of the collaboration network, we need to
adjust them over time, i.e., pi(t). For 1995, this probability is
given in the plots shown in Figure 2. For each year t after 1995,
i.e., from 1996 to 2009, we then recompute the probability that a
firm which is present in year t − 1 leaves in the coming year t. For
this recalculation, we take the information about the network at
time t − 1 into account, in particular about the number of active
partners; i.e., we recompute the plots shown in Figure 2 for every
year t:

ln[ p(t)
1 − p(t)] � α + βNa(t − 1). (2)

We note that with this incremental update we are far from just
fitting the leaving probabilities to a given year. Instead, we
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FIGURE 2 | Probability of firms to leave the network as a function of the number of their active partners. Blue lines: leaving probabilities estimated as in 1 with 95%
confidence intervals (dashed lines). Yellow marks: empirical proportion of nodes leaving observed in the data, as a function of their number of active partners.
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consider the history of the collaboration network, as well as the
actual situation for firms regarding their active partners.

The regression results are shown in Figure 4 for all industrial
sectors. For all years after 1995 we have plotted the differences
p(t) − p, where p refers to the values of 1995, as shown in
Figure 2.

From the results, we notice that firms with a fewer active
partners are more affected by the time-dependent leaving
probabilities than firms with many partners. Specifically, for
firms with less than 5 active partners, the constant leaving
probability underestimates their chances to leave; i.e., in reality
they have left more often. Only for two sectors, Computer
Hardware and Computer Software, in few years firms with 5
or more active partners leave less often; i.e., the constant leaving
probability overestimates their chances to leave.

With these adjusted probabilities, we make a prediction
about the network in year t + 1. Precisely, we calculate the
expected number L(t) of firms from the class of 95 that will
leave. These firms are then removed together with their links
and the collaboration network of the class of 95 is updated:
N(t + 1) � N(t) − L(t). This way we obtain each year a small
cascade of firms leaving, which sum up to the considerable
decline of the network. Our prediction for N(t + 1) is plotted
in Figure 3 as the blue curve. Because our simulations
involve a stochastic component regarding the time when
firms leave, we have averaged this cascade dynamics over
200 runs.

Figure 3 shows both the empirical and the simulated network
sizes for the six different industrial sectors. We want to point out
two observations. First, it is remarkable how well our simulations
of the network decay match the empirical network sizes for 4 out
of 6 industrial sectors. We note that this holds irrespective of the
different industrial sectors and the different sizes of the networks.
Arguably, Computer Software and Electronic Components refer to
very different industries and to larger or smaller collaboration
networks. So, the agreement found lends evidence to the
conclusion that the cascade dynamics we assumed indeed
captures an essential mechanism of the observed decline.

Second, it is as interesting to note the two cases where the
simulated cascade dynamics does not match the empirical
decline: in Pharmaceuticals and Medical Supplies, we clearly
distinguish two phases of the decline. In an earlier phase, from
1995 to 2000, our simulations still agree with the empirical sizes.
But in the last phase, from 2000 to 2005, they significantly deviate
from the real evolution. Our model would predict that the
cascades are further amplified and even more firms from the
class of 95 have left, whereas the empirical dynamics shows a
remarkable stabilization. The trend toward decline is stopped,
and instead the network size of the class of 95 remains almost
constant until the end of the observation period.

This second observation motivates the discussion in the
subsequent sections. In a first step, we want to analyze how to
improve the estimates for the leaving probabilities, to better
reproduce the observed network sizes for the two cases of
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FIGURE 3 | Number of firms from the class of 95 remaining in the respective collaboration network after 1995. Yellow marks: empirical observations, blue lines:
predicted network size with 95% confidence intervals (dashed lines). Note the log scale of the y axis.
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FIGURE 5 | Sizes of the collaboration networks for different industrial sectors over time. Shown is the total network sizeNtot(t), the number of firms from the class of
95, N(t), and the number of newcomers, Nentr(t).
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FIGURE 4 | Time-dependent probability p(t) − p for firms to leave the network dependent on the number of active partners. The blue scale encodes the years
1996–2009 with decreasing darkness.
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Pharmaceuticals and Medical Supplies. In a second step, we
discuss what determines these improved leaving probabilities.

3.2 Adaptive Leaving Probability
What additional information do we have available to further
improve the estimates for the leaving probabilities? So far, we
have used only information from firms of the class of 95. But the
collaboration network changes not only because of the exit of the
established firms from the class of 95, but also the entry of new
firms. Despite the overall “rise and fall” trend, where decline
dominates after 1995, a considerable number of newcomers enter
the existing networks each year. Figure 5 shows the total number
of firms in the network, N tot(t), the number of firms remaining
from the class of 95, N(t), and the number of new firms entering
the network in each year after 1995, Nentr(t). By construction, in
our reference year 1995 N � Ntot, Nentr � 0.

As we observe, in most sectors the total network size N tot(t)
declines over time, even if we have the entry of new firms. So this
does not break the overall trend. The exceptions are the two
sectors Medical supplies and Pharmaceuticals, which we are
mostly interested in. The difference results from two
combined effects, as Figure 5 indicates, are as follows: (a) the
very pronounced increase in the number of newcomers and (b)
the slowed down decrease in the number of firms from the class of
95. We see that in all sectors already from 1998 the number of
newcomers exceeds the number of those firms from the class of 95
that still remained in the network. But for the two sectorsMedical
supplies and Pharmaceuticals the year 1998 is precisely the time

when the number of firms from the class of 95 stopped to further
decrease and kept constant, instead. The most suitable
interpretation for this observation is in fact that these
newcomers basically prevent the established firms from leaving
the network.

We will discuss this argument in more detail in Section 4.
Before that, we want to check whether information about the
newcomers would allow us to improve the estimates about the
leaving probabilities. We repeat the procedure to calculate p(t),
Eq. 2, but now we correct the values for Na(t) to take the
newcomers into account. Then we repeat the simulations of
the cascades shown in Figure 3 with the adaptive leaving
probabilities.

The results are shown in Figure 6. They demonstrate that with
the adaptive leaving probabilities we can accurately model the
network decline of the firms from the class of 95 for each year.
This now holds for all industrial sectors, even for Pharmaceuticals
and Medical Supplies. Thus, our cascade model with adaptive
leaving probabilities that takes the impact of newcomers into
account is able to reproduce the empirical network sizes.

4 DISCUSSION

4.1 Improved Adaptivity
The very good agreement between the empirical and simulated
network sizes shown in Figure 6 lends evidence to our
methodology to estimate the leaving probabilities of firms. In

50

350

1985 1990 1995 2000 2005 2010
Year

N
(t)

Communications Equipment

50

350

1985 1990 1995 2000 2005
Year

N
(t)

Computer Hardware

5

50

350

1985 1990 1995 2000 2005 2010
Year

N
(t)

Computer Software

50

350

1985 1990 1995 2000 2005 2010
Year

N
(t)

Electronic Components

50

350

1985 1990 1995 2000 2005
Year

N
(t)

Medical Supplies

50

350

1985 1990 1995 2000 2005 2010
Year

N
(t)

Pharmaceuticals

FIGURE 6 | Number of firms from the class of 95 remaining in the respective collaboration network after 1995. Yellow marks: empirical observations, blue lines:
predicted network size with 95% confidence intervals (dashed lines). The model has used the adaptive leaving probabilities, obtained from Eq. 2 corrected for the
newcomers.
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particular, it supports our underlying assumption, Eq. 2, that the
number of active partners is a main constituent for their decision
to stay or to leave the network. But we learned that we have to
correct this number to accommodate for the entry of new firms,
to obtain good results.

This leaves us with the task to explain why in some cases the
newcomers have such a remarkable influence. As already
mentioned, we argue that these newcomers prevent the
established firms from leaving the network because they
provide new opportunities to collaborate and often also bring
innovative knowledge to the collaboration network (startups).
Instead of relying on the collaboration with established firms, the
firms from the class of 95 now adapt to the situation. They form
new R&D alliances with the newcomers, increasing their benefits
and have no further reason to leave. Figure 7 shows two
snapshots from the collaboration networks in Medical Supplies
and Pharmaceuticals, to illustrate this interpretation.

These insights can be turned into a novel argument about the
resilience of networks. What we observe is the adaptive ability, or
adaptivity, of established firms to cope with the new situation.
Instead of following the trend to leave the network, they find new
ways of leveraging the situation. This dynamics is precisely what
the term resilience shall describe: the capacity to withstand shocks
generated by the leave of active partners, and the ability to recover
from these shocks, by establishing relations to new partners.
What sounds reasonable for a personal life (and has inspired early
definitions of resilience in a psychological context) can be
observed also for firms, as our analysis reveals.

4.2 Fragile, Yet Resilient
It is the reason for the time-dependent change of the leaving
probabilities, p(t), that the collaboration networks have adapted
to the situation of continuous decline. We note that this decline
has not completely stopped. Compared to the golden age of 1995,
all networks have become much more fragile. Many firms have
left; established collaborations ceased to exist. But some networks
are still resilient in the sense described above. Those firms that
managed to stay in the network after the “fall” trend took over are
indeed the seed for this resilience. They offer newcomers
possibilities to integrate into the, this time much smaller,

collaboration network and they “connect the dots,” as the
backbone of the network. Thus, the decline of the network has
offered the chance, more correctly it increased the pressure, for
the network to adapt to a changing environment of R&D
collaborations.

This leaves us with the question whether our findings could
simply be reduced to the fact that newcomers enter the network.
This assumes that a high entry rate would be sufficient to make a
network resilient. We can refute this argument with reference to
an earlier study about the “autopsy” of the social network
Friendster [25]. This network collapsed despite a size of 113
million users. New users always entered the network until the
very end. But it was shown that after the network has reached a
size of 80 million users, more than 30 million new users still
entering became less integrated into the network. Hence, what
matters is not the network growth, i.e., the rate at which new
nodes enter the network. Whether or not the network becomes
resilient depends on the intergration of these new nodes into the
network. Friendster failed in this respect and collapsed despite a
steady growth.

As the two snapshots of Figure 7 and the dynamics in Figure 3
show, the R&D collaboration networks for Medical Supplies and
Pharmaceuticalswere successful in integrating newcomers. That’s
why the established firms continued to stay. This does not mean
that the network has to be as dense as for Pharmaceuticals. As we
have already shown in Figure 2, each sector is characterized by a
different cost-benefit relation which determines the conditions
for firms to leave. In case of Medical Supplies, it is obviously
sufficient that established firms start collaborating with 1-2
newcomers, whereas for Pharmaceuticals the critical number
of active partners has to be higher.

To conclude, after 1995 all collaboration networks have become
fragile, indicated by the global decline trend. To some degree, they
are yet resilient dependent on their ability to integrate newcomers.
The phrase “fragile, yet resilient”makes reference to an early study
about the robustness of infrastructure networks, such as the
internet, which were dubbed as “robust, yet fragile” [26]. There
the term “fragile” referred to the fact that networks with a very
broad degree distribution are vulnerable against the removal of
nodes with a high degree. Such nodes are rare; therefore, a random
removal of nodes wouldmost likely hit one of themany nodes with
a very low degree. But a targeted attack, if focused on the high-
degree nodes, can easily destroy the network. This insight,
however, refers to the expected properties of an ensemble of
scale-free networks and cannot be applied to all individual
realizations. The internet, in particular, has a low probability to
occur at random. It is carefully designed for robustness and
therefore much less fragile than random realizations.

A similar discussion also applies here. On the one hand, we
observe cascades of firms leaving the network because they have
less active partners, which in turn increases the trend. This
denotes the expected behavior of a network breakdown. The
double feedback that amplifies this cascade, namely, that over
time more and more firms have less and less active partners for
collaborations, is also known from other cascade models, e.g.,
from the so-called fiber bundle model [27, 28]. On the other hand,
because collaboration networks are adaptive, they have in

FIGURE 7 | Snapshots of the collaboration networks in 2003: (left)
Medical Supplies, (right) Pharmaceuticals. Orange: firms of the class of 95
and red: newcomers. The size of a node reflects its degree.
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principle the ability to deviate from this expected behavior. Even
more, we can turn this deviation from the expected behavior into
a measure of the adaptivity of the system and, because it prevents
the breakdown, as a measure of resilience.

As our results illustrate, not all collaboration networks in the
different industrial sectors show this adaptive behavior to the same
degree. Hence, their decline has continued as expected.We can only
speculate why the networks in Medical Supplies and
Pharmaceuticals seem to be more adaptive and thus more
resilient. Two arguments come into play. One refers to the large
number of newcomers which offer ample new opportunities.
Economically, this points not only to low barriers for firms to
enter the market, but also to an increased dependency of the
industry on external innovations. In Pharmaceuticals, for
instance, start-up firms provide a large share of new
technologies, substances, etc. The second argument, however, is
as important, namely, the ability of established firms to integrate
these newcomers into their own R&D activities. This largely
depends on legal constraints, such as compliance or protection
of intellectual properties, and also on the economic pressure to
exploit innovative knowledge earlier than the competitors.

With this discussion we have provided an interface toward
economics, in a truly interdisciplinary manner, which can be
explored in the future. But the research presented in this article
also offers a general insight for network science, where studies
about declining networks are still rare. Obsessed with network
growth and stability, one should try to avoid the premature focus
on the general trend. Decline is not a synonym for instability and
a precursor of collapse. As often it is part of a life cycle dynamics,
where decline should be expected rather than feared. As we have
demonstrated, firms, as individuals in a social setting, have the

ability to cope with this trend, making the system more resilient
than expected. Hence, quantitative measures for resilient
networks cannot be simply taken from the evolution of the
network size. It needs a deeper reflection about the problem of
resilience in face of a life cycle, which we just started to
provide here.
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