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Abstract

We explore the nonlinear dynamics of a macroeconomic model with resource constraints.
The dynamics is derived from a production function that considers capital and a general-
ized form of energy as inputs. Energy, the new variable, is depleted during the production
process and has to be renewed, whereas capital grows with production and decreases from
depreciation. Dependent on time scales and energy related control parameters, we obtain
steady states of high or low production, but also sustained oscillations that show properties
of business cycles. We also find conditions for the coexistence of stable fixed points and limit
cycles. Our model allows to specify investment and saving functions for Kaldor’s model of
business cycles. We provide evidence for an endogenous origin of business cycles if depleting
resources are taken into account.

Business cycles bear similarities to self-sustained oscillations in nonlinear
dynamics. The periodic occurrence of boom, recession, depression and re-
covery phases in economic systems is an empirical fact. But the reasons for
business cycles are still debated. Are they induced by exogenous shocks,
or do they result from the endogenous nonlinear coupling of economic
dynamics? We support the endogenous explanation by providing a model
that generates business cycles when considering a depleting resource. This
depletion is reflected in a production function for economic output depen-
dent on the input of capital and energy. Using this production function,
we derive a nonlinear dynamics that allows for the coexistence of limit
cycles and stationary solutions of high productivity.
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Dedicated to the memory of Jason Gallas

1 Introduction

For Jason Gallas nonlinear dynamics was not just a research domain, it was a lifelong passion.
His impressive list of publications covers various application areas, ranging from geophysics to
cancer. Economics, however, was only touched indirectly, when studying bifurcations in com-
petition models [17]. This is understandable. Compared to the complex dynamics of, e.g., a
Belousov-Zhabotinsky Reaction, one of Jason’s favorite topics [18], nonlinear economic models
are rather simple, and studying macroeconomic models with the arsenal of nonlinear dynamics
was fashionable during the 1980’s to 2000 [30, 39, 42], not so much today.

We take the opportunity to change this perspective a bit with the hope to renew the attention
of physicists and applied mathematicians for these kind of models. Our aim is not to present a
completely new approach. After all, economists would not (yet?) see a need for this. In this paper,
we first remind on how these macroeconomic models have been established, to then propose some
extensions, and conclude by linking our approach to current research on active matter in physics.

A focus of our investigation is the resource dependence of production. The issue itself is broadly
discussed, for instance as “resource dependence theory” in management science [7], but not as
a model that could be formally explored. In economics, exhaustible resources play a role since
Ricardo’s time [13, 29]. Notably, Hotelling made important contributions to formalize the dis-
cussion [4, 8, 22]. The main approach, however, is different from ours in that it primarily deals
with how the timing of resource extraction affects its value and availability over time, balancing
the diminishing stock with factors such as commodity prices, wages, profit rates, and demand.

Our starting point is the neoclassical growth model where production depends on the input of
capital and labor. But these are not modeled as resources that deplete during production. In-
stead, they continuously grow: Labor force because of population growth, capital stock because
of investments. Therefore, we propose to consider a resource that is consumed during produc-
tion. We use the term “energy” for it, but interpret it very broadly as a natural resource. As a
consequence, output is constrained by the availability and the renewal of this resource. Growing
production implies decreasing energy. This denotes an important difference to capital stock which
is assumed to increase with growing production.

Our second contribution is the formal derivation of a production dynamics, starting from our pro-
duction function. In economics, this dynamics is often studied in so-called “multiplier-accelerator”
models [36, 38]. The multiplier describes the impact of an input, e.g., capital, on the expansion of
production. The accelerator describes the feedback of the growing output on the input variable,
e.g., the growth of capital stock through the investment of a fraction of the output. The dynamics
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assumes lags in this feedback process and can produce different types of steady-state solutions,
including fix points, limit cycles, damped oscillations, but also unstable solutions, i.e., growing
oscillations or even chaos.

Theoretical economists, physicists and applied mathematicians have particularly studied a vari-
ant of such time-delayed dynamics, the Kalecki-Kaldor model [27, 32–34, 47, 48]. One of the
reasons for this interest is the complex dynamics of the model. Such a complexity is seen not
as a drawback, but as an advantage, because it offers ample possibilities to generate a wealth
of dynamic patterns. These are considered a precondition to explain a complex real world phe-
nomenon: business cycles [16, 35, 43], originally dubbed trade cycles. The question whether such
delays are really needed to generate the dynamics of business cycles was negatively answered
already by Baron Kaldor himself, who wrote in 1940: “Previous attempts at constructing models
of the Trade Cycle - such as Mr. Kalecki’s or Professor Tinbergen’s - have thus mostly been
based on the assumption of statically stable situations, where equilibrium would persist if once
reached; the existence of the cycle was explained as a result of the operation of certain time-lags
which prevented the new equilibrium from being reached, once the old equilibrium, for some
external cause, had been disturbed. In this sense all these theories may be regarded as being
derived from the ‘cobweb theorem’. The drawback of such explanations is that the existence of
an undamped cycle can be shown only as a result of a happy coincidence, of a particular constel-
lation of the various time-lags and parameters assumed. The introduction of the assumption of
unstable positions of equilibrium at and around the replacement level provides, however, [...] an
explanation for a cycle of constant amplitude irrespective of the particular values of the time-lags
and parameters involved. The time-lags are only important here in determining the period of
the cycle, they have no significance in explaining its existence. Moreover, with the theories of
the Tinbergen-Kalecki type, the amplitude of the cycle depends on the size of the initial shock.
Here the amplitude is determined by endogeneous factors and the assumption of ’initial shocks’
is itself unnecessary.”[24]

This long quotation sets a nice stage for our own investigations. In line with the cited research,
we attempt to explain business cycles as endogenously created by coupled nonlinear dynamics.
This contrasts other explanations of business cycles as the result of exogenous perturbations of
an otherwise stable dynamics. But differently from the cited research, we will not utilize delayed
differential equations to generate cycles, nor propose ad hoc nonlinear functions. Instead, we
will derive the non-linear dynamics from the production function, using suitable assumptions
for the dynamics of capital and energy. This will shed new light on the formal preconditions for
obtaining limit cycle dynamics.
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2 A macroeconomic growth model

2.1 Production function

Economic models often start from a production function

Ŷ [X1(t),X2(t), ....] = Y0 + Y = Y0 +F[X1(t),X2(t), ....] (1)

Ŷ denotes the output, or production, of a macroeconomic entity. For instance, the GDP (gross
domestic product) would be an output measure for a country. It is important to note that Ŷ is
the output per time unit ∆t, e.g., one quarter or one year. So, physically speaking it is a velocity.
Consequently, the time derivative dY /dt discussed below is analogous to an acceleration and the
r.h.s. of the dynamics specifies economic forces.

The variables X1(t),X2(t), .... denote different inputs, e.g., capital, labor, resources, and the
function F[⋅] describes how the input is transformed into a valuable output, similar to the al-
chemistic idea of transforming lead into gold. The normalization Y0 can be seen as an equilibrium
state with baseline economic activity.

Putting Eq. (1) to use requires to specify (i) the input variables Xi, (ii) their combination in a
nonlinear function F[⋅] and (iii) their possible dynamics, Xi(t). Let us first solve issue (ii). An
additive combination of input variables F = a1X1+a2X2+... implies that inputs can be substituted
to some degree, i.e., a shortage of X1 can be compensated by an increase of X2. A multiplicative
combination, F =Xa1

1 ⋅X
a2
2 ⋯, on the other hand highlights that inputs are essential: X1 cannot

be completely substituted by X2. The exponents a1, a2 denote elasticities, i.e., relative changes
of output in response to relative changes of input:

ai =
∂Y /Y

∂Xi/Xi
=
Xi

Y

∂Y

∂Xi
=

∂ lnY

∂ lnXi
(2)

The question is how much freedom one has in choosing the nonlinear function. As we will see, the
functional form is quite restricted by some fundamental assumptions. For a general derivation,
we refer to [2], whereas we follow the more didactic approach of [26]. Let us consider only two
inputs X1, X2. Hence, we need to determine Y (X1,X2). The first fundamental assumption is to
consider only homogeneous functions with the power n known as the degree of homogeneity:

Y (αX1, αX2) = α
nY (X1,X2) (3)

This relation plays a role when discussing so-called returns to scale in economics. If we would
increase the two inputs by an arbitrary factor α, then the output increases by a factor αn. Let
us consider linear homogeneity, n = 1. Then the production function can be expressed in terms
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of partial derivatives by means of the Euler theorem:

1 ⋅ Y (X1,X2) =X1
∂Y (X1,X2)

∂X1
+X2

∂Y (X1,X2)

∂X2
(4)

The second fundamental assumption is about diminishing returns to scale. It means that the
output still increases with increasing input. However, its impact becomes smaller and smaller.
This reflects economic reality: it does not make sense to scale up production beyond certain
limits because the marginal product tends to zero. Formally:

∂2Y (X1,X2)

∂X2
1

< 0 ;
∂2Y (X1,X2)

∂X2
2

< 0 (5)

The third fundamental assumption is about the independence of the inputs, which allows a
separation of variables: Y (X1,X2) = G(X1)H(X2)

G(X1)H(X2) =X1
dG(X1)

dX1
H(X2) +X2

dH(X2)

dX2
G(X1)

1 =X1
dG(X1)/dX1

G(X1)
+X2

dH(X2)/dX2

H(X2)
(6)

Eq. (6) can only hold if

X1
dG(X1)/dX1

G(X1)
= a1 ; X2

dH(X2)/dX2

H(X2)
= a2 (7)

a1 + a2 = 1 (8)

Integration then leads to

∫
dG(X1)/dX1

G(X1)
dX1 = ∫

a1
X1

dX1 = a1 lnX1 +C1

∫
dH(X2)/dX2

H(X2)
dX2 = ∫

a2
X2

dX2 = a2 lnX2 +C2 (9)

With the initial condition Y (1,1) = A = e(C1+C2) one eventually finds as the functional form for
the production function:

Y (X1,X2) = AX
a1
1 Xa2

2 (10)

We will use this form in the following. The pre-factor A is known as the total factor productivity
and describes how efficient the inputs are used, e.g., by an advanced technology. In general, A
accounts for effects in total output not caused by inputs, for instance the impact of good weather
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on agricultural output. It should be noted that today increasing production is mostly attributed
to improvements in the total factor productivity [23].

2.2 Cobb-Douglas production function

We now solve issue (i), i.e., we specify the input variables. To discuss a concrete example, we refer
to the neoclassical growth model [44–46], a standard macroeconomic model that uses capital K(t)
and labor L(t) as inputs. These variables are combined in a so-called Cobb-Douglas production
function [6, 21, 49]:

Ŷ = Y (K,L) = A K1−αLα (11)

which neglects Y0. The two exponents denote the elasticities with respect to labor and capital:

α =
∂ lnY

∂ lnL
; β = 1 − α =

∂ lnY

∂ lnK
(12)

For the dynamics of the input variables the neoclassical growth model assumes:

dK

dt
= sY − κK ;

dL

dt
= rL (13)

The capital stock K grows via an investment I = sY that is coupled to the current production,
0 < s < 1 being the savings rate. I.e., by means of capital there is a positive feedback between
the current and the future output level. κ is the depreciation rate, i.e., the value of capital stock
exponentially decays if it is not maintained. For the labor force L an exponential growth is
assumed, which is inspired by population dynamics. If the net growth rate r > 0, then births and
immigration dominate and result in an exponential increase, if r < 0, then deaths and emigration
dominate and result in an exponential decay of the population size which is equal to the available
labor force.

For the output Y [K,L], an instantaneous adjustment is assumed. Instead of dY /dt, the economic
model only considers dK/dt and dL/dt and postulates that Y takes its new level immediately
after K and L change. In physics, this is known as a separation of time scales. Compared to
the slow change of K and L, Y changes fast, therefore it can be assumed in quasi-stationary
equilibrium. This reduces the discussion to a comparison of the different values of Y before and
after changes of K and L.

This setup has become the canonical model for the exogenous explanation of business cycles [25].
Subsequent works have introduced additional assumptions to endogenize the causes of business
cycles [14, 19, 28, 37].
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2.3 Comparative statics

The simplifying assumptions of the neoclassical growth model consequently generate only a very
simple dynamics, namely either exponential growth or exponential decay of output. Therefore,
the modeling aim is not to study the dynamics, but only the stationary state obtained for the
reduced variable y = Y /L: output per capita. For instance, GDP per capita is an important
economic indicator to compare the wealth of countries. Dividing Eq. (11) and Eq. (13) by L

results, after some straightforward transformations, into the set of equations for the reduced
variables

y =
Y

L
= Akβ ; k̇ =

d

dt
(
K

L
) = sy − (r + κ)k (14)

These equations make it obvious that large immigration rates r act similar to large depreciation
rates κ, drastically reducing the output per capita, y, and, hence, the capital per capita, k,
available in a given country. More important from a modeling perspective, the dynamics now
always reaches a stable equilibrium state, k⋆, for the capital per capita. From k̇ = 0 we obtain:

sAkβ⋆ = (r + κ)k ; k⋆ = [
sA

r + κ
]

1
α

(15)

A government should focus its policy design on the optimal value sgold of the savings rate, i.e.,
the optimal split of the output in investment and consumption. I = sY is the fraction of output
reinvested into the growth of the capital stock and, hence, the further growth of the economy.
Therefore, only the remainder of the output C = (1− s)Y is left for consumption, e.g., increasing
pensions by the government. Consumption per capita in the equilibrium state k⋆ is given as
c⋆ = (1 − s)y⋆ = Ak

β
⋆ − (r + κ)k⋆ and maximizing consumption means:

dc⋆
dk⋆
= 0 ; sgold = (1 − α) ; kgold = [

(1 − α)A

r + κ
]

1
α

(16)

The policy recommendation for governments, according to the neoclassical growth model, is
then to increase the savings rate s if it is below sgold because this will increase both the national
wealth, i.e., the capital per capita, and the consumption. If, however, s is larger than sgold, then
the recommendation is to decrease the savings rate i.e., to lower the national wealth at the expense
of increasing consumption. This is not the place to discuss the validity of such policy implications.
But OECD recommendations for wealthy countries to increase governmental expenditures are
fueled by such insights.
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3 Coupling between production and energy

3.1 Modifications

“The greater the prestige, the greater the opposition” also applies to the neoclassical growth
model. Instead of reviewing the many criticisms and the various economic debates that followed,
we will concentrate on some nonlinear dynamic aspects. To introduce these, we replace labor
force as the relevant input variable. There were certainly periods in history where economic
growth was predominantly driven by an exponential increase of the population. But nowadays
this growth does not easily translate into exponential growth of labor force. A refined dynamics
of L(t), Eq. (13) should also reflect labor related issues such as unemployment, unskilled labor
and working poor, lack of specialized workforce, etc. which are not further discussed here [14].

Instead, we consider, in addition to capital, K(t), a different input variable, energy, E(t). It
is a general form of “energy” to reflect also other material resources needed for production.
Considering resources that are depleted denotes a conceptual change. The production function
Y [K,L] uses capital and labor as essential inputs, but the process of production does not reduce
any of the inputs. Thus, K and L act as catalysts for the production, very similar to catalysts
in chemical reactions. They are needed for the “reaction”, but are not consumed during the
production. The input variable E however is consumed, i.e., the initial resource is diminished.

To better understand the consequences of this modification, we remind that production Y is a
velocity, output per time unit. However, capital K and energy E are not flow variables in the
system dynamic sense, i.e., quantities per time unit, but stock variables that can be accumulated
or depleted. Negative values of capital would indicate debt, which is possible in principle but
will not be considered here. To avoid negative values, we constrain these stock variables by
floor values Kf ≥ 0, Ef ≥ 0 such that the input variables remain positive in the dynamic case.
Hence, our production function reads Y [K(t),E(t)] and has the general form already discussed
in Section 2.1:

Ŷ [K(t),E(t)] = Y0 + Y = Y0 +A [K(t) −Kf ]
aK
[E(t) −Ef ]

aE ; aK + aE = 1 (17)

Here, we have considered a baseline output Y0 > 0 for the case that no additional capital or energy
is used. This value shall reflect basic economic activities, which are always present, so Y0 is not
zero as in the neoclassical growth model. The aim of all economies is to reach a level of production
well above Y0, by means of capital and energy. Hence, our production function contains of two
terms where the second one reflects changes in production resulting from the input of K and E.
The fact that the input variable E is consumed is the precondition for increasing production,
i.e., decreasing energy has a positive effect.
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3.2 Eigendynamics and driven dynamics

To contribute to economic modeling we introduce an explicit dynamics for production. This point
deserves a broader discussion. Our reference point, the neoclassical growth model, assumes only
a dynamics for the input variables, to recalculate the output instantaneously at every time step.
So Y simply follows the dynamics of K and L. We instead consider an explicit dynamics dŶ /dt

resulting from two terms, the eigendynamics P [Y ] and the driven dynamics Q[K,E]:

dŶ

dt
=
dY [Y,K,E]

dt
= P [Y ] +Q[K,E] (18)

Eigendynamics refers to changes in the production that only depend on Y , but not on input
of capital and energy. We already proposed that in such a case only the baseline production
Y0 should be reached. Hence, our eigendynamics P [Y ] has to reflect how this baseline value is
established. This can be realized by different forms of saturation dynamics. To be flexible, we
choose a very general ansatz:

P [Y ] = g1 [Y0 − Y (t)] + g2Y (t) [Y0 − Y (t)] (19)

This is known as the mixed source model in management science. The first term solves the so-
called “cold start problem”, i.e., it guarantees that production can be induced initially, without
pre-existing production. The second term reflects the fact that existing production has a positive,
i.e., amplifying, impact on the further growth of output. Both terms saturate at a level Y0, and
the parameters g1, g2 determine the specific shape of the growth dynamics. They only affect how
fast the baseline production is reached, but do not determine Y0.

The driven dynamics Q[K,E] reflects changes of production resulting from the dynamic input
of capital and energy. For the derivation we can use Euler’s Theorem, starting from Eq. (4) with
K̃ =K(t) −Kf , Ẽ = E(t) −Ef as our input variables Xj(t):

Q[K,E] =∑
j

dYj

dt
=∑

j

∂Y

∂Xj

1

εj

dXj

dt
=
∂Y

∂K̃

1

εK

dK̃

dt
+
∂Y

∂Ẽ

1

εE

dẼ

dt
(20)

In Eq. (20) we have introduced two different time scales, dtK = εKdt and dtE = εEdt to allow
the dynamics of Y (t) to evolve on a time scale different from the dynamics of K(t) and E(t).
dt ≡ dtY then refers to the dynamics of Y (t). The relevance of these different scales will be
demonstrated below.

To complete the formal description, we need to determine ∂Y /∂K̃ and ∂Y /∂Ẽ and provide
kinetic assumptions for dK̃/dt and dẼ/dt. In line with the use of energy as a depleting resource
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the dynamics of K and E can only be a dissipative dynamics, i.e., it has the general form:

dXi(t)

dt
= −γi [Xi −Xf ] +Qi (21)

The damping term −γi[Xi−Xf ] ensures, on the one hand, that an unbounded growth is prevented
and, on the other hand, that the value of the input variable stays above a floor value Xf ≥ 0, i.e.,
remains positive. Then, the dynamic variable Xi(t) converges to a stationary value, [X⋆i −Xf ] =

Qi/γi. The source term Qi has to compensate dissipation, i.e., it denotes the growth or the inflow
of resources. Hence, instead of a classical conservative system, we model a dissipative system.
From a physical perspective the economy is a pumped system, similar to active matter, a point
we will further elaborate in the discussion.

3.3 Capital input

To specify the dynamics of the input variables we start with capital as the “classic” input variable.
Using the general form of the production function, Eq. (17), with K̃ =K(t)−Kf , Ẽ = E(t)−Ef

and aK = 1/2, gives

∂Y

∂K̃
=
A

2
K̃−1/2Ẽ1/2

=
Y

2K̃
(22)

For the dynamics of capital we use the general dissipative ansatz, Eq. (21), but need to consider
that it evolves at the time scale tK = εKt:

1

εK

dK̃

dt
= −κ [K(t) −Kf ] +QK ; QK = sY (t) ; K̃ =

s

κ
Y (23)

For the source term QK we have re-used the assumption from the neoclassical growth model,
Eq. (13), i.e., a share s of the total output is invested into capital stock. The stationary solution
of Eq. (23) gives us a linear relation between K̃ and Y . For the dynamics of production with
reference to K we then obtain:

dYK
dt
=
∂Y

∂K̃

1

εK

dK̃

dt
= (

κ

2s
)

1

εK

dK̃

dt
=
κ

2
Y (t) −

κ2

2s
[K(t) −Kf ] (24)
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3.4 Energy input

For the second input variable, energy, we obtain from the production function, Eq. (17), with
K̃ =K(t) −Kf , Ẽ = E(t) −Ef and aE = 1/2

∂Y

∂Ẽ
=
A

2
K̃1/2Ẽ−1/2 =

Y

2Ẽ
(25)

To specify the dynamics for Ẽ(t) at the time scale tE = εEt, we start from a power series ansatz
[40]:

dẼ

dtE
= QE + Ẽ

m

∑
n=0

dnY
n
= QE + d0Ẽ + d1ẼY + d2ẼY 2... (26)

which generalizes the dissipative dynamics, Eq. (21). For QE we consider that energy is provided
at a constant rate q, like sun radiation or a steady supply of fossil fuels. The term without Y has
to reflect the dissipation, i.e., d0 = −c, where c is the dissipation rate. If we restrict the power
series to n = 2, the two remaining terms just describe a saturation dynamics if d2 = −ζ is negative:

d1ẼY − ζẼY 2
= ζẼ Y [Ys − Y ] ; Ys =

d1
ζ

(27)

This is the same saturation dynamics as assumed for second term in the mixed source model. It
results:

1

εE

dẼ

dt
= q − cẼ + ζẼ [YsY − Y

2] (28)

It makes sense to combine the two negative terms in Eq. (28) in a generalized dissipation term
−γEE with

γE = c + ζY (t)
2 (29)

In addition to the exponential decay of energy at a rate c, the dissipation function γE reflects that
any change of production, positive or negative, requires to consume additional energy [11, 12].
Therefore, it is not a constant, but depends on the squared change of production, Y (t)2. The
parameter ζ captures the inefficiency in using the resource E to boost production. The higher ζ,
the more the energy is reduced to change production by a given amount.

For Y (t)→ 0, i.e., no production, we obtain from Eq. (28) in the stationary limit the source value
for energy, EQ −Ef = q/c. For Y (t)→ Y0, instead, we regain our baseline production Y0[K0,E0]
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with:

[E0 −Ef ] =
q

c − ζY0[Ys − Y0]
(30)

The dynamics of production with reference to E eventually reads as:

dYE
dt
=
∂Y

∂Ẽ

1

εE

dẼ

dt
=

Y

2[E(t) −Ef ]
q − Y

c

2
+ Y 2 ζYs

2
− Y 3 ζ

2
(31)

3.5 Oscillations vs fixed points

Before introducing additional assumptions, we investigate the full dynamics. In particular, we
have to consider the eigendynamics P [Y ], Eq. (18), of Ŷ and the contributions Q[K,E], Eq. (20)
from the input variables. Putting our separate equations together at time scale t, we arrive at
the three coupled nonlinear equations:

dŶ

dt
= = Y (t) [

κ − c

2
+

q

2[E(t) −Ef ]
− g1 + g2Y0] + Y (t)

2
[
ζYs
2
− g2] − Y (t)

3 ζ

2

−
κ2

2s
[K(t) −Kf ] + g1Y0 (32)

dẼ

dt
=
dE(t)

dt
= εEq − εE [E(t) −Ef ] [c + ζYsY (t) − ζY (t)

2] (33)

dK̃

dt
=
dK(t)

dt
= εKsY (t) − εKκ [K(t) −Kf ] (34)

We solve this dynamics numerically. As illustrated in Fig. 1 we find two significantly different
outcomes; (i) a stationary production and (ii) sustained oscillations. Unfortunately, the stationary
solution is Y (t) → Y0, i.e., after some intermediate oscillations we are back at the baseline
scenario, while looking for a case with Y (t)≫ Y0. This is obtained in the second scenario where
we can verify that ⟨Y (t)⟩ > Y0. Thus, the average production is indeed above the baseline. More
important, during certain time periods Y (t) is much larger that Y0, i.e., we see a boom phase of
the economy. But this does not last long, and is followed by a steep decline of production that
can even reach negative values, very similar to business cycles. These comprise four phases of
different duration, (a) a short boom phase, (b) a long recession phase, (c) a short depression
phase, and (d) a long recovery phase, after which a new cycle starts. This is indeed captured
with our dynamics of production.
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Figure 1: Production Y (t) (green), capital K(t) (blue) and energy E(t) (green) for (a) ζ=0.04
and (b) ζ=0.02. The dashed lines give the respective baseline values Y0=3, K0, Eq. (23), E0,
Eq. (30). (c) Phase plots Ẏ (Y ) (red), K̇(K) (blue) , Ė(E) (green) for ζ=0.02 (solid) and
ζ=0.04 (dashed). Other parameters: d1=0.225, s=0.8, q=0.5, c=0.6, κ=0.6, Y0=3, Kf=0,
Ef=0, g1=0.05, g2=0.01, εK=0.5, εE=1.

4 Nonlinear oscillations and business cycles

4.1 Two-dimensional dynamics

In order to calculate a bifurcation diagram it would be convenient to reduce the full dynamics
of three coupled variables to two variables. The simplest way of doing so is to assume that the
dynamics of one of the input variables, K or E, relaxes very fast and therefore can be described
by it’s quasistationary equilibrium. This is equivalent of choosing εK → 0 in Eq. (34) or εE → 0

in Eq. (33), which results in dK/dt = 0 or dE/dt = 0. Note that this does not imply K −Kf = 0 or
E −Ef = 0, instead the respective variables are tidily coupled to the production Y and therefore
can still change over time via Y (t). We obtain as quasi-stationary equilibria, K⋆, E⋆:

K⋆ −Kf =
s

κ
Y (t) ; E⋆ −Ef =

q

c − ζY (t) [Ys − Y (t)]
(35)

If we choose the quasi-stationary approximation for capital, K(t) = K⋆, this gives the following
two coupled equations for Y (t) and E(t):

dŶ

dt
= Y (t) [−

c

2
+

q

2[E(t) −Ef ]
− g1 + g2Y0] + Y (t)

2
[
ζYs
2
− g2] − Y (t)

3 ζ

2
+ g1Y0 (36)

dẼ

dt
= εEq − εE [E(t) −Ef ] [c + ζYsY (t) − ζY (t)

2] (37)

This reduced dynamics still gives us the same characteristic patterns as before if we use, e.g.,
εE as control parameter: (a) for larger εE damped oscillations of production that converge to Y0
over time, (b) for smaller εE sustained oscillations that persist over time.
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If we choose instead the quasi-stationary approximation for energy, E(t) = E⋆, we have that
production only depends on capital

dŶ [K]

dt
= g1 [Y0 − Y (t)] + g2Y (t) [Y0 − Y (t)] +

κ

2
Y (t) −

κ2

2s
[K(t) −Kf ] (38)

dK̃

dt
= εKsY (t) − εKκ [K(t) −Kf ]

In this case, we only obtain damped oscillations of production that converge to Y0 over time,
which is not surprising because we lack the nonlinear feedback from the energy resource.

To avoid this trivial scenario we develop a different limit case of eliminating E. We verify in
Eq. (32) that the coupling between the dynamics of production and of energy is solely given by
the term Y q/(2Ẽ). Using the production function, we have an expression for the energy as a
function of capital:

∂Y

∂K̃
=
A

2
K̃−1/2Ẽ1/2

=
κ

2s
; Ẽ =

κ2

A2s2
K̃ (39)

Together with Y /K̃ = κ/s this can be used to replace

Y

2Ẽ
q =

A2s2

2κ2
Y

K
q =

sA2q

2κ
(40)

We note that the parameter A2 is related to Y 2
0 = A

2K̃0Ẽ0 with K̃0 given in Eq. (23) and Ẽ0

given in Eq. (30). Hence,

A2
=
Y0κ

sq
(c − ζY0[Ys − Y0]) ;

Y

2Ẽ
q = Y0 (

c

2
−
ζ

2
Y0[Ys − Y0]) (41)

Putting our equations together, we have a dynamics for the two coupled nonlinear equations of
production and capital which is different from Eq. (38):

dŶ [K]

dt
= Y (t) [

κ − c

2
− g1 + g2Y0] + Y (t)

2
[
ζYs
2
− g2] − Y (t)

3 ζ

2

−
κ2

2s
[K(t) −Kf ] + Y0 (g1 +

c

2
−
ζ

2
Y0[Ys − Y0])

dK(t)

dt
= εKsY (t)] − εKκ [K(t) −Kf ] (42)

Precisely, the difference between these two reductions is that the quasi-stationary approximation
of E results in a coupling between E and Y , Eq. (35), which gives Eq. (38), whereas Eq. (42)
is based on a coupling between E and K. The latter became possible only because we used the
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production function as an additional information about the relation between E and K, coupled to
Y . This dynamics becomes very promising, because we can replicate the two previous scenarios:
(a) damped oscillations with Y → Y0 and (b) sustained oscillations. Additionally, it allows for a
new stationary scenario: (c) convergence to a high production Y ≫ Y0, dependent on the choice
of parameters. This will be analyzed in the following.

To make the nonlinear equation more readable we introduce the following abbreviations for the
coefficients:

CL =
κ − c

2
− g1 + g2Y0 ; CS =

ζYs
2
− g2

CQ =
ζ

2
; CC = Y0 (g1 +

c

2
−
ζ

2
Y0[Ys − Y0]) (43)

The cubic equation reads then in compact form:

Ẏ = CL Y +CS Y 2
−CQ Y 3

+CC −
κ2

2s
K̃(t) (44)

4.2 Bifurcation diagrams

The two-dimensional dynamics defined in Eq. (42) allows to calculate a bifurcation diagram
from Ẏ = 0 and K̇ = 0. Because of the cubic term in the production dynamics, we can expect
three stationary solutions, denoted by Y⋆, K⋆. We need to know how these solutions change if
we vary control parameters of the dynamics. We have chosen εK because the consideration of
different time scales for the dynamics of production, energy and capital is a main feature of our
model. After eliminating E from the equations, εE plays no role. However, energy still implicitly
impacts the dynamics of production via the parameters d1 and d2 = −ζ which define Ys = −d1/d2,
Eq. (27). The influence of energy as a depleting resource on production is a main contribution
of our paper, therefore we have chosen d1 and ζ as additional control parameters. Fig. 2 shows
the bifurcation diagrams for the three different control parameters.

For our analysis we have chosen a set of parameters that yields three fixed points. For all three
control parameters one of these fixed points is at Y0 (equal to 1.25). Additionally, we find different
regimes where either three fixed points exists or only one. The bifurcation diagram Y⋆(εk) in
Fig. 2(a) clearly shows this. It is the simplest because εK only affects the stability and not the
values of the fixed points. For small εK (below 0.048), the lower and upper fixed points are
unstable and the central one is a saddle point. In this case, all trajectories converge to a limit
cycle, similar to the one show in Fig. 1(c) for the three-dimensional system.

Increasing the value of εK above 0.048, we observe for the upper fixed point a transition from
unstable to stable. That means the former limit cycle now coexists with the stable fixed point
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Figure 2: Bifurcation diagrams of Y⋆ for different control parameters: (a) εK , (b) ζ = −d2, (c)
d1. Dashed lines indicate unstable branches, solid lines stable branches, and dotted lines saddle
points. Parameters: q0=1, g1=0.29, g2=0.003, κ=0.36, s=0.8, c=0.06, d1=0.22, d2=0.02, Y0=1.25,
Kf=0, Ef=0, εK=0.06,

(for εK < 0.071). Trajectories originating close to the fixed point will converge to the fixed point,
while other trajectories will converge to the limit cycle. Increasing εK further makes the limit
cycle disappearing and all trajectories converging to the upper fixed point. For large values of
εK (above 0.235) the lower fixed point (at Y0) also undergoes transition from unstable to stable.
Depending on the initial conditions, now trajectories will converge either to the lower or upper
fixed point. The middle fixed point remains always a saddle. This means that trajectories can
cross it.

The two bifurcation diagrams for the energy related control parameters d1 and ζ are similar
in that they show an inverted-s curve for Y⋆. To better understand this, we can treat K as a
parameter. Doing so, Y⋆ shows three branches: the upper and lower ones are stable while the
middle one unstable. This means that all trajectories will be attracted towards these two stable
branches. We verify that both control parameters have a strong impact on the position of the
upper branch that grows with d1 and 1/ζ.

These three branches yield fixed points only when, in addition to Ẏ = 0, also K̇ = 0. That means
K is in fact not a parameter, but a linear curve K⋆ = (s/κ)Y⋆, Eq. (23), that can intersect with
Y⋆ in up to three points, depending on the parameters. There are two stable points possible if
K⋆(Y⋆) crosses the upper or lower branches of Y⋆, and a saddle point where K⋆(Y⋆) crosses the
unstable branch of Y⋆ only once.

We take a closer look at Fig. 2(b), starting on the right and decreasing ζ. For large values of ζ,
only one stable fixed point at Y0 exists and all trajectories will converge to it. Decreasing ζ below
0.047, this fixed point changes from stable to unstable and the limit cycle appears. This transition
resembles a Van-der-Pol oscillator. At ζ = 0.218 a second fixed point appears which subsequently
bifurcates into an upper unstable point and a middle saddle point. Further decreasing ζ to values
below 0.02, the upper fixed point undergoes a transition from stable to unstable. The limit cycle
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briefly coexists with the stable fixed point, i.e., trajectories reach the limit cycle or converge to
the fixed point depending on initial conditions. Slightly decreasing ζ, the limit cycle disappears
and all trajectories converge to the upper fixed point whose value becomes larger with smaller ζ.
Interestingly, because Y0 remains unstable, trajectories originating below the middle fixed point
first need to go below Y0 before they can overcome the unstable point and converge to the stable
one.

The bifurcation diagram for d1, Fig. 2(c) has a similar interpretation. For low values of d1 only
a stable fixed point at Y0 exists. Increasing d1, we observe for this fixed point a transition from
stable to unstable when the limit cycle appears, similar to a Van-der-Pol oscillator. For larger
values of d1 a second fixed point appears which then bifurcates into an unstable upper fixed
point and a middle saddle point. When the upper unstable fixed point undergoes a transition to
a stable point, the limit cycle first coexists with the stable point. When the limit cycle disappears,
all trajectories converge to the upper fixed point. For even larger values of d1 the middle fixed
point joins the lower point at Y0 and then bifurcates again, yielding a saddle point at Y0 and an
unstable fixed point lower than Y0.

For d1 > 0.416 the lower fixed point changes to a stable fixed point. That means, depending on
initial conditions trajectories can converge either to a high value Y ≫ Y0 or a very low value
Y ≪ Y0. This is the regime we were interested to find: A high and stable production. The fact
that it coexists with a regime of low and stable production illustrates the risk for the economic
system. For the same parameters the initial conditions impact whether the system ends up in a
fortunate or an unfortunate regime.

As the discussion shows, the relations between the two non-trivial manifolds resulting from Ẏ = 0

and K̇ = 0 generate a complex dynamics for our production model. A particularly interesting
feature is the coexistence of stable fixed points and cycles for certain parameter ranges. Hence, an
economic system would be stable while the macroscopic dynamics is completely different. This
coexistence of different stable solutions was already explored in other macroeconomic dynamics.
For example, for the Kaldor model a coexistence of stable and oscillatory behavior was obtained
from an interplay between noise and periodic forcing [20]. In a series of publications [3, 9, 10]
Dieci et al. analyzed bifurcation processes that lead to the coexistence of multiple attractors,
including stable equilibria and limit cycles. They demonstrated how small changes in parameters
or initial conditions can result in drastically different long-term outcomes. These findings have
been further extended to time-discrete systems [1].

4.3 Kaldor’s model of business cycles

In his famous work, Kaldor [24] explains the emergence of business cycles from a mismatch
between two different economic processes, investments I(Y,K) and savings S(Y,K), where the
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former is controlled by the capitalists and the latter by the workers. He proposed the dynamics
of production as follow:

dY (t)

dt
= I(Y,K) − S(Y,K) (45)

The two functions are not specified, instead they are described by a number of qualitative ar-
guments to justify their nonlinear dependence on capital K and production Y . We will come
back on these arguments after presenting candidates for the two nonlinear functions I(Y,K) and
S(Y,K). To derive formal expressions, we need to split the nonlinear dynamics of Eq. (44) into
two parts for I(Y,K) and S(Y,K) such that the sum is preserved. This problem is not triv-
ial because of underspecification. We give only three characteristic examples with the resulting
functions plotted in Fig. 3.
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Figure 3: Investment I(Y,K) and savings S(Y,K) for different splits. (a) Eq. (46), (b) Eq. (47),
(c)-(e) Eq. (48). Parameters: g1=0.01, g2=0.1, κ=0.7, s=0.8, c=0.3, d1=0.225, d2=0.02, Y0=3,
K=6.

A symmetric split would yield (see Fig. 3a):

I(Y,K) = 0.5 CL Y + 0.5 CS Y 2
− 0.5 CQ Y 3

+ 0.5 CC − 0.5
κ2

2s
K̃

S(Y,K) = −I(Y,K) ; i.e.Ẏ = 2 I(Y,K) (46)
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A linear assumption for S(Y,K) leads to (see Fig. 3b):

I(Y,K) = CS Y 2
−CQ Y 3

−
κ2

2s
K̃

S(Y,K) = −CL Y −CC (47)

An uneven split of the nonlinear terms between I(Y,K) and S(Y,K) reads instead (see
Fig. 3c,d,e):

I(Y,K) = CL Y + 0.2 CS Y 2
− 0.25 CQ Y 3

+ 0.5 CC − 0.5
κ2

2s
K̃

I(Y,K) = −0.8 CS Y 2
+ 0.75 CQ Y 3

+ 0.5 CC + 0.5
κ2

2s
K̃ (48)

All three variants lead to the same dynamics for Y (t), Eq. (44). In particular all of them have
the same stationary solutions. Thus, the only way to make a meaningful choice is to resort on
economic arguments, keeping in mind that investments I(Y,K) and savings S(Y,K) have an
economic meaning. Here, we refer to the work of Kaldor [24], but do not repeat the details of
the argumentation.

First, Kaldor argues that both functions have to monotonously increase with production Y .
This rejects Eq. (46) (Fig. 3a) because these functions are non-monotonous in Y . It also rejects
Eq. (47) (Fig. 3b) because these functions are monotonously decreasing in Y . The variant of
Eq. (48) (Fig. 3c,d,c) however fulfills this requirement.

Second, Kaldor distinguishes the behavior of the two functions in case of high and low capital. If
capital is low, investments should increase with K over time to make use of many good investment
opportunities. Savings, however, should decrease with K over time because of rising prices. On
the other hand, if capital is high, investments should decrease, while savings should increase. This
implies that both curves move against each other as indicated in Fig. 3(c,d). If I(Y,K) moves
up, S(Y,K) moves down (for low levels of K) and the other way round (for high levels of K).
This requirement is met by the functions of Eq. (46) and Eq. (48), but not by Eq. (47), because
here S(Y,K) does not depend on K and therefore does not move. Nevertheless, Eq. (47) would
generate oscillations like the other examples.

We conclude that our proposal for the two nonlinear functions given in Eq. (48) fulfills Kaldor’s
requirements. It should be noted, however, that the concrete shape of our nonlinear functions
depend on the chosen parameters, thus statements about the slope and the monotonous increase
are restricted to this choice.

Kaldor [24] argues that two linear functions could still monotonously increase with Y and cor-
rectly depend on K, but they would only allow for one stationary solution. This solution would
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be unstable if the slope of I(Y,K) is larger than the slope of S(Y,K). Hence, the economy would
either only grow or only shrink. On the other hand, if the slope of I(Y,K) is smaller than the
slope of S(Y,K), the stationary solution would be stable and the economy would remain around
this stable state. This, however, contradicts the broad observations of business cycles, which
Kaldor wanted to explain with his investigations.

4.4 Relation to the Van-der-Pol oscillator

Our model generates business cycles and provides functional expressions for the dynamics. Re-
producing the asymmetric duration of the phases, however, is not the merit of our efforts, it shall
be attributed to the underlying general dynamics of a Van-der-Pol oscillator. This oscillator is a
paragon of a non-linear system with nonlinear friction. To compensate this friction, oscillations
require the input of energy. That means, we have a dissipative system and the oscillations can
be classified as limit cycles. For a critical energy supply, we obtain a Hopf bifurcation.

The Van-der-Pol oscillator can be formalized with one second-order or with two coupled first-
order differential equations. For our comparison the latter is more suitable.

dy(t)

dt
= ω [y(t) −

1

3
y3(t) − x(t)]

dx(t)

dt
=
1

ω
y(t) (49)

Different from our two-dimensional dynamics, Eq. (42), the Van-der-Pol oscillator has only one
control parameter ω that appears in both equations. To obtain oscillations ω > 0 is required.
Only for large ω, these oscillations remind of business cycles with short and long phases. To map
the equations of the Van-der-Pol oscillator back to the Kaldor model, Eq. (45), we first have to
drop the depreciation term κK in the dynamics of capital, Eq. (13), i.e., K̇ = I. If Ẏ = α(I − S)
and K̇ = I is then solved for I(Y ) and K(Y ), using Eq. (49), one finds [5]

I(Y ) =
1

ω
Y

S(Y ) =
1 − ω

ω
Y +

Y 3

3
+K (50)

where ω is a factor of α. Note that S(Y,K) is proportional to K, similar to our Eq. (48), while
I(Y,K) does not depend on K, against Kaldor’s requirements. While convenient for nonlinear
dynamics, the fact that we only have one control parameter ω is considered a drawback for
economic applications because we cannot distinguish the different processes underlying economic
dynamics. Eq. (48) instead provides more flexibility.
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5 Discussion

There is an ongoing debate about the origin of business cycles. Are they exogenous, triggered by
external shocks such as wars, natural catastrophes, political collapse? Or, are they endogenous,
that means, resulting from the internal dynamics of a country’s economy, changes in consumption,
inflation? The answer is probably that both endogenous and exogenous causes play a role. No
surprise if big disruptions, like a major earthquake destroying production sites, induce a recession,
even a depression of economic activities. From a modeling perspective it is more interesting how
small disruptions, e.g., the failure of single elements, can be amplified such that a whole system
collapses [31]. This requires to understand the internal feedback mechanisms that generate the
system dynamics endogenously. In this paper, we provide a minimal model that allows to study
such endogenous effects on economic growth, in particular the appearance of business cycles, in
a systematic manner. Unlike previous models, which often relied on external shocks or specific
nonlinear functions, our model demonstrates how these complex dynamics can arise endogenously
from the interactions between production and resource constraints.

The starting point of our investigations was to propose a production function that, in addition
to capital, depends on a generalized “energy”: a resource that is depleted during production.
Increasing production thus means decreasing energy. Our production dynamics results from this
production function, together with assumptions about the dynamics of capital and energy. Here,
we have chosen an ansatz that considers different time scales and a nonlinear dependence of
production on energy. This way, we have derived a nonlinear dynamics of production that is
able to generate business cycles endogenously, i.e., without assuming external shocks or time
lags. Under the constraint of a specific coupling between capital and energy, we find additionally
fixed points of the dynamics where the production is considerably higher than a baseline. While
both cycles and fixed points are stable, our model is sensitive to parameter changes and initial
conditions. This should be seen as a an advantage because in complex systems already small
deviations can lead to instabilities, and economic systems are no exception.

The fact that energy is consumed during production drives the economy out of a thermodynamic
equilibrium, which is reflected in our model. The take-up of energy, its transformation and
dissipation are features of “active” matter [40]. Energy enables systems to evolve and to self-
organize [15]. But in social and economic systems this does not imply a desired outcome, as
witnessed by business cycles in economic activities.

As a modeling consequence of such out-of-equilibrium situation, we have to distinguish between
driving and driven variables. In our case, energy is the driving variable. Its take-up and trans-
formation increases production as the driven variable. This bears similarities to active motion,
the directed movement of biological entities such as cells or animals [11]. In both cases, energy is
consumed, that means decreased to increase production or speed. This makes our model differ-
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ent from related models of business cycles, which do not reflect the consumption of energy. The
constrained resource sets limits to the increase of production, resulting in a saturated growth
dynamics. Our model considers, in addition to the driven dynamics, also the eigendynamics of
the system. That means, it captures the production dynamics in the absence of additional input,
a feature not addressed in simpler macroeconomic models. It is in fact the interplay between
eigendynamics and driven dynamics that generates non-trivial stationary solutions, such as high
stable production or limit cycles. The coexistence of stable fixed points and limit cycles, already
observed in other models of business cycles, is particularly interesting. It allows to discuss inter-
vention mechanisms that can not only stabilize economic dynamics, but also drive it to preferred
states [41], offering a new perspective on business cycle dynamics.
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