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Abstract
Real-world networks are sparse. As we show in this article, even when a large number of interactions is observed, most node pairs remain 
disconnected. We demonstrate that classical multiedge network models, such as the G(N, p), configuration models, and stochastic block 
models, fail to accurately capture this phenomenon. To mitigate this issue, zero-inflation must be integrated into these traditional 
models. Through zero-inflation, we incorporate a mechanism that accounts for the excess number of zeroes (disconnected pairs) 
observed in empirical data. By performing an analysis on all the datasets from the Sociopatterns repository, we illustrate how zero- 
inflated models more accurately reflect the sparsity and heavy-tailed edge count distributions observed in empirical data. Our 
findings underscore that failing to account for these ubiquitous properties in real-world networks inadvertently leads to biased 
models that do not accurately represent complex systems and their dynamics.
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Accurate modeling is essential for understanding complex systems, whether when measuring the rate of disease spread in a popu
lation or analyzing the efficiency of information flow on social media. Real-world complex networks are inherently sparse, often leav
ing many node pairs disconnected despite a large number of edges. Classical network models mistakenly predict dense networks, 
resulting in numerous low-interaction pairs rather than a few high-interaction ones, which can lead to inaccurate predictions about 
real-world network properties. By integrating zero-inflation into multiedge models, we can significantly enhance their accuracy in 
representing real-world networks.
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Introduction
Networks are foundational for understanding complex systems. 

Accurate modeling of these networks can significantly impact 

various domains, such as optimizing distribution systems (1), 

understanding the spread of diseases (2), and analyzing social be

haviors (3). However, a critical challenge lies in developing models 

that correctly capture the complex patterns observed in real- 

world networks.
Consider the interactions between students in a high school. 

Interactions can be represented as edges in a network where stu
dents are the nodes. Pairs of students who do not interact appear 
as disconnected, while repeated interactions between the same 
pair of students create multiedges (also known as parallel edges), 
where the multiplicity of each edge represents the interaction 
count. Students from different classes have limited opportunities 
to meet due to distinct schedules and social circles. When they do 
not share common spaces or schedules, they do not interact. 

However, when they do meet, the frequency of their interactions 
can vary independently of their initial chance of meeting.

This dynamic, common in real-world networks, often leads to 
“zero-inflation” in the distribution of interaction counts: the num
ber of disconnected pairs exceeds what we would expect given the 
large number of potential interactions. This results in an inflated 
number of zeroes in the distribution of interaction counts, as illus
trated in Fig. 1A.

In other words, empirical networks are typically sparse (4–6): 
only a limited number of node pairs share multiple interactions, 
while the majority remains disconnected. Traditional network 
models, such as the G(N, p) (7, 8), configuration models (9–11), 
and stochastic block models (12, 13), have been instrumental in 
advancing our understanding of complex networks. However, 
these models fall short in representing the inherent sparsity ob
served in real multiedge network data. They usually assume a 
proportional relationship between the growth of edges and the 
number of connected node pairs, which is not always accurate.
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Our article emphasizes the necessity of incorporating 
zero-inflation (14) into network models. To bridge this gap, we sys
tematically extend a broad family of multiedge network models to 
effectively address the challenges posed by sparse empirical 
networks.

Recently, there has been an increased focus on the issue of 
zero-inflation in network data. Krivitsky (15) briefly discussed a 
zero-inflated version of exponential random graph models for multi
edge networks that accounts for sparsity by modeling dyad-wise dis
tributions. Choi and Ni (16) highlighted the challenges posed by 
zero-inflation when modeling sparse networks and proposed meth
ods to address this issue. Similarly, Ebrahimi et al. (17) and Motalebi 
et al. (18) explored zero-inflated and hurdle models to better capture 
the inherent sparsity in social and biological networks. Furthermore, 
Dong et al. (19) and Motalebi et al. (20) specifically focused on adapt
ing stochastic block models to account for excess zeroes, underscor
ing the importance of accurately modeling sparsity for realistic 
network analysis. Collectively, these works emphasize the necessity 
of incorporating zero-inflation into network models to enhance their 
applicability to real-world, sparse network data.

This work aims to achieve two main objectives. First, we highlight 
the ubiquity of zero-inflation in real-world multiedge network data 
by analyzing all datasets from the Sociopatterns repository (21). 
Second, we demonstrate how zero-inflation can be integrated into 
traditional multiedge network models, providing a more accurate 
representation of the sparse nature of empirical networks. 
Adopting zero-inflated models in network science holds promise 
for improving the analysis of intrinsically sparse structures, such 
as higher-order networks (22, 23) and hypergraphs (24).

Multiedge network models
Multiedge network models serve as generative stochastic frame
works that not only capture the presence of edges between nodes 
but also quantify the number of edges observed for each node 
pair. These models are crucial for understanding the complex 
structures and dynamics of real-world networks.

Broadly, multiedge network models fall into three main categor
ies: micro-canonical (11, 25), Poisson (12, 26), and Hypergeometric (9, 
27). Each category offers a different level of constraint and flexibility, 
catering to various types of network data.

Micro-canonical models are the most constrained, defining an 
ensemble of networks that share specific fixed attributes, such 
as degree sequences or intra-block edge counts, and assigning 
equal probability to each network within the ensemble. In 
contrast, Poisson and Hypergeometric models operate within 
more flexible sample spaces, preserving these attributes only 
in expectation. The critical difference between Poisson and 
Hypergeometric models lies in their independence assumptions: 
the former treat node pairs as independent, whereas the latter 
do not (27). This distinction is crucial, as it influences the applic
ability and performance of the models on different types of net
work data.

In this article, we focus on Poisson network models. The inde
pendence assumption in Poisson models simplifies the introduc
tion of zero-inflation, which is our primary aim.

Poisson multiedge network models rely on Poisson count proc
esses to describe phenomena such as edge formation and node in
teractions. This is the case for classic extensions of the G(N, p) 
model to multiedge networks (7, 8), the Chung-Lu configuration 
model (10, 26), the classical stochastic block model and the 
degree-corrected stochastic block model (12), and even 
count-ERGM models (15).

In a Poisson count process, the probability of observing n events 
in a fixed time interval is governed by a Poisson distribution with 
parameter λ:

Pr(X = n) =
λn

n!
e−λ. (1) 

This Poisson model assumes that the distribution of the random 
variable X will be centered around its mean λ, with a low probabil
ity of zero occurrences, especially as λ increases.

Poisson network models are defined as n2 independent Poisson 
count processes, one for every (directed) pair of nodes in the net
work:

Pr(G) =
􏽙

ij

Pr(Aij) =
􏽙

ij

λAij

ij

Aij!
exp ( − λij), (2) 

where Aij denotes the edge count between i and j and λij are param

eters that can be functions of node attributes, edge attributes, or 

A B

Fig. 1. Empirical multiedge networks are sparse. Traditional multiedge models like the G(N, p) struggle to reflect real-world data characteristics. A) Edge 
count distribution in Zachary’s Karate Club showing bimodality. The solid red line represents the G(N, p) prediction, and the dashed blue line its 
zero-inflated counterpart. B) Over time, edges accumulate between the same pairs of nodes in real-world networks. In gray, the interquartile range of the 
number of multiedges per pair ρ = m/ N

2

( 􏼁
and the fraction of connected node pairs d = M/ N

2

( 􏼁
, over all Sociopatterns datasets. The solid black lines denote 

the median values, while the dashed red line represents the expected fraction of connected pairs according to the G(N, p) model with the corresponding m 
value. Note that while the model quickly predicts a fully connected network, the empirical network remains sparse, indicating that most interactions 
occur among existing pairs rather than forming new connections.
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block memberships, among others. Appropriately specifying 
these parameters is key for capturing the heterogeneous nature 
of interactions within the network.

Several well-known network models are special cases of this gen
eral Poisson framework. For example, the G(N, p) model for multi
edge networks corresponds to a Poisson network model where 
λij = p for all i, j. The Stochastic Block Model is a generalization that 
introduces B different λb parameters, one for each block in the net
work (12). The Chung-Lu configuration model (CLCM), foundational 
to many concepts in network science like modularity (28) and 
degree-correction (12), also fits within this framework, featuring 
node-dependent parameters λij = θiθj (10, 26). Further, the 
Degree-Corrected Stochastic Block Model combines aspects of both 
the Chung-Lu and Stochastic Block Models, with λij = θiθjλb (12).

Modeling zero-inflation
While Poisson network models are standard tools in multiple dis
ciplines (12, 15, 26), they struggle to accurately represent sparse 
multiedge networks (14, 16–20). The expected number of con
nected pairs M according to a Poisson network model is given by:

E[M] =
􏽘

ij

1 − exp −λij

􏼐 􏼑􏼐 􏼑
. (3) 

However, 
􏽐

ij λij gives the expected number of multiedges m in the 

network. Consequently, E[M] saturates exponentially with E[m] to 
a fully-connected network. Hence, with a larger observed m, the 
model tends to yield fully-connected networks.

Figure 1B compares the sparsity of empirical multiedge net
works with the predictions of Poisson network models. We use 
interaction networks from the Sociopatterns repository as an ex
ample (21), where different datasets record contacts between indi
viduals over short time frames. With increasing observation time 
and data collection, the number of multiedges m grows rapidly. 
Yet, the growth of the number of connected node pairs M is con
siderably slower. This suggests that individuals predominantly 
interact within their existing social circles, limiting the number 
of new interactions over short periods. The dashed line in the 
plot shows the predicted number of connected pairs according 
to Eq. 3. As discussed above, with an increasing number of multi
edges m, the number of connected pairs quickly saturates to a 
fully connected network, deviating from the empirical data.

The observed count distribution, instead, shows a strong 
bimodality, characterized by peaks at zero and around some λ̂ val
ue. Even the well-known example of Zachary’s Karate Club 
network exhibits this bimodal distribution, as illustrated in 
Fig. 1A. Zachary’s Karate Club represents the social interactions 
within a karate club. When examining the distribution of interac
tions in this network, we observe a significant number of discon
nected node pairs, even when considering the existence of 
smaller groups, exemplifying the zero-inflation phenomenon.

Zero-inflated models (14) have been developed to mitigate this 
issue. These models are a mixture of a binary process for generat
ing zeros and a Poisson count process for generating the counts. 
The probability mass function is given by:

Pr(X = n) = (1 − q)δ0(n) + q
λn

n!
e−λ. (4) 

Here, q ∈ [0, 1] is the mixture weight, and δ0(n) is the Kronecker 
delta function, which is 1 when n = 0 and 0 otherwise. The term 
(1 − q) accounts for the excess zeros that are not explained by 
the Poisson process, providing a more accurate model for data 
like the one in Fig. 1A.

In addition to zero-inflated models, hurdle models provide an
other approach to address count data with excess zeroes (29). 
While zero-inflated models combine a binary process for zero 
counts with a Poisson process for positive counts, hurdle models 
treat zeros and positive counts as outcomes of two distinct proc
esses. Specifically, a hurdle model first uses a binary process to de
termine whether an interaction occurs (i.e. whether the count is 
zero or positive), and then applies a truncated Poisson process 
for positive counts. This separation ensures that zeros are gener
ated differently than positive counts, which can offer advantages 
in terms of model identifiability and interpretability (20). 
However, this assumption implies that sparsity is only generated 
by the hurdle process, and not by low interaction rates. Such a 
strict assumption may not always hold true, especially in cases 
where modeling the interplay between low interaction rates and 
zero-inflation is critical (29). Finally, if the hurdle is set at zero, 
as most commonly done, it can be shown that the resulting hurdle 
model is just a re-parametrized zero-inflated model (30).

In this article, we choose to focus only on zero-inflation as a 
way to model sparsity in complex networks. In the following sec
tion, we detail how zero-inflation is incorporated in Poisson net
work models and how to perform the inference of the 
parameters from data. Nevertheless, most of the results shown 
apply in a similar way to hurdle models (29).

Parameter estimation
Throughout this article, we employ a variation of the expectation– 
maximization (EM) algorithm for parameter inference, specifically 
tailored to leverage key properties of zero-inflated Poisson (ZIP) 
distributions. This approach ensures methodological consistency 
across different models, allowing for coherent comparisons and a 
clearer understanding of their individual characteristics.

Direct maximum-likelihood estimation (MLE) for zero-inflated 
models presents significant challenges, as noted in prior work 
(31–33). The difficulty stems from the complexity of network mod
els in high-dimensional spaces, where the MLE of the mixture 
probability in Eq. 4 involves a logarithm of sums. This form com
plicates simplification and resists manipulation with standard 
tools, making numerical optimization of the log-likelihood func
tion necessary.

Rather than directly estimating the parameters q and λ in Eq. 4, 
we leverage the fact that the ZIP distribution is a power series 
distribution (PSD). As shown in (30), PSDs allow us to use the first 
moment equation as a maximum-likelihood equation. Solving

x̅ = E[n] =􏽢λ􏽢q (5) 

yields one of the maximum-likelihood equations for parameter 
estimation.

In the univariate case, the second MLE equation is defined by 
matching the observed proportion of zeroes f0 to its expected val
ue (30):

(1 −􏽢q) +􏽢qe−􏽢λ = f0. (6) 

In the univariate case of Eq. 4, fixing the first two moments—one 
for the count process and one for the zero process—effectively 
achieves the MLE of the parameters. For the more complex models 
discussed below, however, the second equation may not always 
be applicable due to dependencies between parameters. In net
work models with structured dependencies (e.g. degree-corrected 
models), the mixture parameter q may vary by node pair or com
munity, introducing correlations that complicate isolating the 
zero-inflation component.

Casiraghi and Andres | 3
D

ow
nloaded from

 https://academ
ic.oup.com

/pnasnexus/article/4/1/pgaf001/7950790 by guest on 05 February 2025



To address this, we rely on the first equation, which remains 
valid as an MLE condition, to link the Poisson and mixture param
eters. We then treat the Poisson parameters as latent and opti
mize over the mixture ones, effectively defining a one-step EM 
algorithm.

Zero-inflating Poisson network models
Zero-inflated G(N, p) model
The G(N, p) model is one of the foundational generative models for 
networks and among the simplest. It is characterized solely by a par
ameter p, which determines the expected number of edges in a net
work realization (8). In this model, interactions between different 
node pairs are assumed to be independent and identically distributed.

For the multiedge variant of the G(N, p) model, we set λij = p in 
Eq. 2 for all node pairs. The expected number of connected node 
pairs—henceforth denoted as links—in a network realization is 
then given by:

E(M | p) =
􏽘

ij

(1 − e−p) = N2 − N2e−p, (7) 

where N represents the number of nodes, considering a loopy di
rected network. This model reveals its limitation in representing 

sparse multiedge networks, as E(M | p) approaches N2 with 
increasing p.

To better model sparse networks, we integrate zero-inflation 
into the edge probabilities using Eq. 4. The zero-inflated G(N, p) 
model is defined by:

Pr(G | p, q) =
􏽙

ij

(1 − q)δ0(Aij) + q
pAij

Aij!
e−p

􏼠 􏼡

. (8) 

Incorporating zero-inflation, we calculate the expected number of 
interactions (edges) E(m | p, q) and the expected number of links 
E(M | p, q) as follows:

E(m | p, q) = qpN2, (9) 

E(M | p, q) = qN2 − N2qe−p. (10) 

As the zero-inflated G(N, p) (zi-G(N, p)) model corresponds to the 
univariate ZIP distribution discussed above, the maximum- 
likelihood estimates of the parameters p and q can be obtained 
by matching these expected values to the observed counts of in

teractions and links, 􏽢m and 􏽢M, respectively:

E(m | p, q) : = 􏽢m, E(M | p, q) : = 􏽢M. (11) 

Solving for p and q, we derive:

􏽢p =
􏽢m

N2􏽢q
, 􏽢q =

􏽢m􏽢M

N2 􏽢m + 􏽢MW −
􏽢me

−
􏽢m
􏽢M

􏽢M

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

⎛

⎜
⎜
⎜
⎜
⎝

⎞

⎟
⎟
⎟
⎟
⎠

, (12) 

where W[z] represents Lambert’s W function, solving wew = z (14).

Zero-inflated stochastic block model
Building on the G(N, p) model, the Stochastic Block Model (SBM) in
troduces a richer representation of network structures by distin
guishing blocks in the network, each characterized by a unique 
edge probability (34, 35). By doing so, the model captures commu
nity structures. Nodes are assigned to one of B different groups, 

and the probability of interactions between nodes i and j in groups 
bi and bj, respectively, is determined by a block-specific parameter 
λbibj

. Hereafter, we assume block assignments to be known a priori. 
We discuss the implications for community detection of 
zero-inflation later in the manuscript.

To accommodate potential sparsity of interactions within dif
ferent blocks, we detail the zero-inflated version of the SBM 
(zi-SBM). The model is defined by the following probability distri
bution:

Pr(G | λ, q)

=
􏽙

ij

(1 − qbibj
)δ0(Aij) + qbibj

λAij

bibj

Aij!
exp ( − λbibj

)

⎛

⎝

⎞

⎠,
(13) 

where each block (b, d) is associated with a unique mixture par
ameter qbd, allowing for block-specific zero-inflation.

The expected number of interactions mbd and links Mbd in the 
zi-SBM are given by:

E(mbd | λ, q) = qbdλbdNbNd, (14) 

E(Mbd | λ, q) =
􏽘

bd

NbNdqbd(1 − e−λbd ), (15) 

where Nb denotes the number of nodes in group b.
For parameter inference, we equate the first moments of the 

distribution to the observed values 􏽢mbd and 􏽢Mbd:

E(mbd | λbd, qbd) : = 􏽢mbd, E(Mbd | λbd, qbd) : = 􏽢Mbd. (16) 

Solving Eq. 16, we find:

􏽢λbd =
􏽢mbd

qbdNbNd
. (17) 

A closed-form solution for 􏽢qbd is not readily available. 

Nonetheless, the values of 􏽢qbd can be determined by numerically 

solving the set of B2 independent equations given in Eq. 16. 
Because the zi-SBM effectively defines B independent zi-G(N, p) 

models, i.e. one per block, 􏽢λbd and 􏽢qbd are the maximum-likelihood 
estimates for the model parameters.

Dong et al. (19) proposed a variational-EM algorithm for param
eter estimation in the special case of a multilayer zero-inflated 
stochastic block model. This algorithm efficiently estimates the 
community labels and model parameters, handling the sparsity 
and correlations in multilayer networks. The method proposed 
demonstrates effectiveness in capturing complex interaction pat
terns through extensive simulations and real-world case studies.

Zero-inflated configuration model
While both the G(N, p) and SBM models offer valuable insights, 
they fall short in encoding node heterogeneities. Configuration 
models fill this gap by introducing a parameterization that ac
counts for degree heterogeneities (11). In the framework of 
Poisson models, the CLCM achieves this by expressing the general 
parameters λij as θout

i θin
j , a product of node-parameters (10, 26). For 

undirected networks, we have θout = θin = θ.
Incorporating zero-inflation into the CLCM results in the 

Zero-Inflated Chung-Lu Configuration Model (zi-CLCM). The mod
el is described by the probability distribution:

Pr(G | θ, q)

=
􏽙

ij

(1 − q) δ0(Aij) + q
(θout

i θin
j )Aij

Aij!
exp ( − θout

i θin
j )

􏼠 􏼡

.
(18) 
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Parameters identifiability
It is important to note that the model’s Poisson parameters θout 

and θin appear always in pairs. This means that they are defined 
modulo constants. This characteristic requires fixing a constraint 
to enable their estimation. A common approach is to 
re-parametrize the model by introducing a new parameter C 
that constrains the L1-norm of θout and θin:

􏽘

i

θ⋆
i = C, (19) 

where the superscript ∗ stands for in/out.

Parameters estimation
To define the first set of maximum-likelihood equations, corre
sponding to Eq. 5 for the univariate case, we set three different 
first-moment equations to their observed values:

E(m | θ, q) : = 􏽢m, (20) 

∀ i : E(kout
i | θ, q) : = 􏽤kout

i , ∀ i : E(kin
i | θ, q) : = 􏽣kin

i , (21) 

where 􏽢m denotes the number of interactions in an observed net
work and 􏽤kout

i and 􏽣kin
i the observed out- and in-degrees of i.

Replacing Eq. 19 in Eq. 20 yields

E(m | θ, q) = q
􏽘

i,j

θout
i θin

j = qC2, (22) 

which allows to tie the maximum-likelihood estimator 􏽢C to q:

􏽢C =

���
􏽢m
q

􏽳

. (23) 

The expected degree sequences from the model are given by:

E(kout
i | θ, q) = q θout

i

􏽘

j

θin
j ,

E(kin
i | θ, q) = q θin

i

􏽘

j

θout
j ,

(24) 

From Eqs. 19, 23, 24, we derive expressions for 􏽢θ⋆
i as functions of q 

and the observed degrees 􏽤kout
i and 􏽣kin

i :

􏽢θ⋆
i =

􏽣k⋆
i����
􏽢mq

􏽰 . (25) 

Lastly, we need to estimate the remaining parameter q. In this 
case, however, we need to resort to the explicit maximization of 
the likelihood function. Substituting Eq. 25 into Eq. 18 leads to 

an equation for 􏽢q that can be optimized numerically.

Zero-inflated degree-corrected stochastic block 
model
Finally, we discuss the zero-inflated degree corrected stochastic 
block model (zi-DCSBM). As for the standard degree-corrected sto
chastic block model (12), it incorporates both node heterogeneity 
and block structure into a single comprehensive model, combin
ing the features of the zi-CLCM and the zi-SBM. The introduction 
of block-specific mixture parameters qbd, constituting the vector q, 
allows the model to account for varying levels of zero- 
inflation across different blocks. By parametrizing Eq. 2 with 

λij = θout
i θin

j λbibj
, we derive the following probability distribution:

Pr(G | θ, λ, q) =
􏽙

ij

(1 − qbibj
) δ0(Aij)

􏼐

+ qbibj

(θout
i θin

j λbibj
)Aij

Aij!
exp ( − θout

i θin
j λbibj

)

􏼡

.

(26) 

Parameters identifiability
Just like in the CLCM and zi-CLCM, the parameters θout and θin in 
the DCSBM and zi-DCSBM are defined modulo constants. We 
re-parametrize the model by deriving 2B constraints for the 
L1-norm of the node-specific Poisson parameters:

􏽘

i

θ⋆
i δb(bi) = C⋆

b , (27) 

for each block b. In contrast to the CLCM and zi-CLCM, here, the 
zi-DCSBM does not depend on the choice of parameters C⋆

b , as 

shown in Supplementary Material E. Therefore, we are free to 
set C⋆

b : = C = 1 ∀ b to simplify the parameter estimation.

Parameters estimation
Manipulating the first moment equation, we get the expected val
ues of the number of interactions per block:

􏽢mbd = E(mbd | θ, λ, q) = qbdλbd

􏽘

i∈b

θout
i

􏽘

j∈d

θin
j . (28) 

The constraints in Eq. 27 allow us to tie the block Poisson param
eters λ to the mixture parameters q:

􏽢λbd =
􏽢mbd

qbd
. (29) 

From the first moment equation, we derive the expected degree 
sequences

E(kout
i | θ, q) = θout

i

􏽘

d

qbidλbid

􏽘

j∈d

θin
j ,

E(kin
i | θ, q) = θin

i

􏽘

d

qbidλbid

􏽘

j∈d

θout
j .

(30) 

Leveraging the constraints given by Eq. 27, from Eq. 30, we obtain:

E(k⋆
i | θ, q) = θ⋆

i

􏽘

d

qbidλbid. (31) 

Solving the set of equations defined by Eqs. 29 and 31 for θout and 

θin yields their MLE:

􏽢θ⋆
i =

􏽣k⋆
i

􏽢κ⋆
bi

, (32) 

where 􏽢κout
bi

=
􏽐

d 􏽢mbid and 􏽢κin
bi

=
􏽐

d 􏽢mdbi 
denote the out- and in- 

degree of block bi, respectively. Finally, substituting these expres

sions into Eq. 26 provides a set of B2 independent equations for 
each qbd that need to be optimized numerically to find the MLEs 
of all remaining parameters.

Motalebi et al. (20) discussed the zi-DCSBM in comparison with 
a hurdle version of the DCSBM. The probability distribution of the 
hurdle-DCSBM can be written as

Pr(G | θ, λ, q)

=
􏽙

ij

(1 − qbibj
) if Aij = 0,

qbibj

(θout
i θin

j λbibj
)
Aij exp (−θout

i θin
j λbibj

)

Aij! 1−exp (−θout
i θin

j λbibj
)

􏼐 􏼑 if Aij > 0,

⎧
⎪⎪⎨

⎪⎪⎩

(33) 
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where the role of the model parameters is the same as in the case 
of the zi-DCSBM. The primary difference between these two 
models lies in their approach to handling sparsity: zero-inflation 
accounts for excess zeros by introducing a separate zero- 
generating process, while hurdle models treat zeros and positive 
counts as generated by two distinct processes. Hurdle models of
fer advantages in terms of identifiability because they eliminate 
the ambiguity between zero counts and low interaction rates. 
However, this means that sparsity, or disconnected pairs, is 
solely due to the hurdle process and not from inherently low inter
action rates, which may limit their appropriateness for many 
applications (29).

Node level zero-inflation
The models described by Eqs. 18 and 26 account for node hetero
geneity only at the Poisson level. At the zero-inflation level, they 
assume a uniform process with a single parameter qb per block 
b (or one single parameter for the zi-CLCM as all nodes belong to 
the same block). This means that the model will reproduce the ex
pected degrees but not the number of neighbors per node. To 
introduce degree heterogeneity at the mixture level as well, we 
can modify qb into qbqout

i qin
j . The parameter estimation process 

follows the same procedure of the simpler models. However, 
now we need to optimize the likelihood equation for the 2 ·N + B 
parameters q. This increment in computational complexity (dis
cussed in Supplementary Material D), though, is offset by a model 
that better reproduces the empirical data.

Considerations about community detection
So far, we have assumed that the partitioning of nodes into dis
tinct groups is known. However, community detection can also 
be performed endogenously within the zero-inflated model, as
signing labels to the nodes based on interaction and link data. 
Community detection methods can generally be divided into 
two categories: those based on quality functions (28) and those 
based on MLE principles (13).

The former approach, based on quality functions, can be read
ily adapted to zero-inflated models. To do so, one require a suit
able partition quality function that needs to be optimized to find 
optimal node partitionings. A common example is modularity opti
mization (28), where the partition quality function Q is given by:

Q =
1
m

􏽘

ij

Aij −
kout

i kin
j

m

􏼢 􏼣

δ(ci, cj), (34) 

where Aij represents the adjacency matrix, ki and kj are the ob

served degrees of nodes i and j, m is the total number of edges, ci 

and cj are the communities of nodes i and j, and δ is the 

Kronecker delta function. The term 
kout

i
kin

j

m in Q denotes the expected 

number of interactions between nodes i and j according to the a 
CLCM fitted to the empirical network defined by the adjacency 
matrix A (28).

In the case of the zi-CLCM, the expected number of interactions 
is given by qθout

i θin
j . Substituting the MLE estimates of θ from Eq. 

25, we get that expected number of interactions according to the 

zi-CLCM fitted to the empirical network A is also given by 
kout

i
kin

j

m . 

Thus, the partition quality function Q in Eq. 34 is equally applic
able to zero-inflated models, meaning that community detection 
via modularity optimization is unaffected by the presence of 
zero-inflation.

The latter category of community detection instead, exempli
fied by methods utilizing information theory to assess community 
quality, requires the computation of the MLE of the model and 
potentially the integration of the likelihood function to eliminate 
continuous parameters like θ⋆ and q (see e.g. (13)). Unfortunately, 
performing these integrals analytically is not possible, because of 
the structure of the mixture probability. A numerical solution 
may exist, but the development of such methods and the assess
ment of their divergence from the standard nonzero-inflated 
DCSBM fall outside the scope of this article and warrant dedicated 
exploration in future research.

Performance of zero-inflated multiedge 
models
The aim of this section is to investigate the limitations of Poisson 
multiedge models in dealing with empirical data and to 
demonstrate how zero-inflation can address these issues. We 
benchmark our models using classical network datasets from 
the Sociopatterns repository (21). These datasets, which report 
contacts among individuals over short time frames, typically re
sult in sparse multiedge networks despite a large number of re
corded interactions.

The datasets encompass various social interaction scenarios, 
including interactions among high-school students, conference 
attendees, and hospital staff. Each dataset varies in terms of the 
number of nodes (N), unique links (M), total multiedges (m), dens
ity (d), and multiedge density (ρ). Nevertheless, most datasets ex
hibit low link density, i.e. d = M/ N

2

( 􏼁
≪ 1, and large multiedge 

density ρ = m/ N
2

( 􏼁
. This indicates a sparse network structure des

pite the large number of recorded interactions. Such characteris
tics make these datasets a prominent example where classical 
multiedge models are sub-optimal. As shown in Fig. 1B, naively 
modeling these datasets would quickly yield fully connected net
work realizations, in stark contrast with the sparse structure ex
hibited by the empirical data.

Interestingly, sparsity is often observed together with a “heavy- 
tailness” of the edge count distribution (36). The empirical distri
bution of edge counts displays a considerable number of outliers, 
i.e. unexpectedly large edge counts. We quantify this by comput
ing the excess kurtosis of the edge count distribution.

Excess kurtosis denotes the tails’ heaviness relative to a normal 
distribution. Values close to 0 indicate a distribution with similar 
tail behavior to the normal distribution. Positive values signify 
heavier tails, indicating more extreme outliers, while negative val
ues suggest lighter tails. In other words, large positive excess kur
tosis values imply a higher probability of extreme events or 
outliers compared with a normal distribution. The sample excess 
kurtosis and other basic statistics of the empirical data analyzed 
are reported in Table 1.

DCSBM versus zi-DCSBM
Among the models considered in this study, degree-corrected sto
chastic block models (DCSBM) are the most general due to their 
capability to accommodate both group-level and node-level het
erogeneity. Consequently, our comparison focuses on the 
zero-inflated and classical variants of DCSBM. To maintain sim
plicity, we opt to infer the blocks in the models utilizing the 
Leiden modularity maximization algorithm (37). Modularity, as 
previously mentioned, relies on the expected edge count derived 
from an underlying null-model, typically a configuration model. 
Given that classical and zero-inflated model pairs share the 
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same expectation, modularity assumes an identical form for both. 
Hence, we can utilize identical blocks for both models. While 
maximum-likelihood optimization offers the potential for super
ior models overall, the blocks identified for classical and 
zero-inflated models are not necessarily the same. For the pur
pose of comparing how DCSBM and zi-DCSBM contend with 
sparse multiedge networks, employing the same blocks allows 
us to better understand the differences between the two models. 
Therefore, we proceed with modularity-inferred blocks.

Sparsity
When sparsity mainly arises between groups, block models—even 
without zero-inflation—may appear sufficient to capture sparsity. 
However, they are nevertheless outperformed by their 
zero-inflated variants. An illustrative example is provided by the 
HS13 dataset reporting face-to-face interactions between stu
dents in a high school in Marseilles, France, in December 2013. 
In Fig. 2A, it can be seen that where the number of multiedges is 
large, DCSBM tends to produce numerous connected pairs with 
low edge counts. This contrasts with the empirical data, where 
fewer pairs tend to be connected but with larger edge counts.

In the Supplementary Material, we show that, despite the in
herent limitations of the Poisson distribution in capturing heavy 
tails, introducing zero-inflation redistributes probability mass to
ward the tails of the edge count distribution, allowing the model to 
better reflect the extreme values observed in the empirical data.

In Fig. 2A (top), the empirical distribution of edge counts is de
picted as a bar plot alongside the expected edge count distribution 
of DCSBM (shown in red). It is notable that the bulk of the weight 
in the distribution of DCSBM is concentrated at small positive counts, 
thus significantly underrepresenting large counts. Conversely, the 
zi-DCSBM, fitted with the same blocks, is capable of shifting the dis
tribution (shown in blue in the plot) towards larger counts.

Figure 2A (bottom) illustrates the cumulative error over the dif
ferent edge count values. It quantifies the discrepancy between 
the observed distribution and the expected distribution according 
to the models. The cumulative error represents the percentage of 
node pairs with a given edge count in the data compared with 
those expected in the model. In the case of HS13, for low counts 
there is a considerable difference between the DCSBM and the 
zi-DCSBM. This difference does not grow further for larger counts.

Additionally, we can use the chi-squared goodness-of-fit statis
tic to quantitatively compare the distributions. The chi-squared 
statistic for the DCSBM is 7,199.8, while the chi-squared statistic 
for the zi-DCSBM is 4,125.2. The smaller statistic for the 

zi-DCSBM shows that the zero-inflated model provides a consider
ably closer match to the empirical distribution. Nevertheless, the 
large value of both statistics indicates that both models deviate 
significantly from the empirical distribution.

In other examples, multiedges are bundled over a small num
ber of pairs both within and between groups. In these cases, the 
DCSBM performs particularly poorly, as it greatly underestimates 
the sparsity of the graph. An example of this is provided in Fig. 2B 
by the KH dataset, reporting face-to-face interactions measured in 
2012 between members of different households of rural 
Kenya. Again, Fig. 2B (top) shows the empirical distribution of 
edge counts as a bar plot and the expected distribution of the 
DCSBM in red. Here, the DCSBM is unable to even approximate 
the empirical distribution. The zi-DCSBM fitted with the same 
blocks is instead able to better follow the empirical distribution 
(in blue in the plot). Such a large difference can be easily seen in 
Fig. 2B (bottom). The cumulative error for the DCSBM starts higher 
and grows much faster than in the zi-DCSBM case.

These results can be confirmed quantitatively by computing the 
chi-squared goodness-of-fit statistics. In the case of the DCSBM, 
we get 1,442.7. The zi-DCSBM gives 175.91, nearly an order of 
magnitude smaller than the nonzero-inflated model. This sup
ports the qualitative assessment obtained from Fig. 2B. In the 
supplementary Material A, we provide as supplementary 
figures the equivalents of Fig. 2 for the remaining 10 
Sociopatterns datasets.

The KH dataset allows for further investigation of the role of 
zero-inflation on network models. On the left of Fig. 3, the empir
ical network is visualized as a multiedge graph. The “lens” plots 
in the center of the figure show two realizations from the 
DCSBM (bottom) and zi-DCSBM (top). It is easy to visually glean 
what is quantified in Fig. 2. The DCSBM yields much denser real
izations, i.e. with a higher fraction of connected pairs, compared 
with both its zero-inflated variant and the empirical data. The 
adjacency matrices on the right side of Fig. 3 further confirm 
this. The adjacency matrix of the DCSBM realization is 
much denser than either its zero-inflated counterpart or the em
pirical one.

Diffusion speed
The structure of a network significantly impacts dynamics run
ning on it, influencing processes such as information diffusion 
and opinion formation (38). In denser networks, diffusion proc
esses occur more rapidly. This can be quantified by the spectral 
gap—a measure of connectivity and diffusion potential—defined 
as the difference between the smallest and second smallest eigen
values of the Laplacian matrix (39). A larger spectral gap generally 
indicates faster diffusion across the network.

In Fig. 4 (bottom), we show the percentage of the empirical 
spectral gap captured by the DCSBM and its zero-inflated counter
part across all Sociopatterns datasets. Our results show that the 
DCSBM consistently overestimates the diffusion speed, yielding 
a larger spectral gap than that observed in empirical data. 
Conversely, the zi-DCSBM, by better preserving network sparsity, 
aligns more closely with the observed spectral gap values. This of
fers an improved representation of diffusion properties in real- 
world networks. In Supplementary Material B, we provide further 
details about this analysis.

Small-worldness
Another key feature distinguishing empirical networks is their 
small-worldness: small world networks are characterized by 

Table 1. Summary of datasets.

Dataset N M m d ρ kurtosis

HS13 327 5,818 188,508 0.11 3.54 1,244.05
SFHH 403 9,565 70,261 0.12 0.87 4,109.62
HS12 180 2,220 45,047 0.14 2.80 712.33
WP 92 755 9,827 0.18 2.35 880.08
WP15 217 4,274 78,249 0.18 3.34 695.74
HS11 126 1,709 28,561 0.22 3.63 725.30
Thiers11 126 1,709 28,561 0.22 3.63 725.30
LyonSchool 242 8,317 1,25,773 0.29 4.31 237.41
HT09 113 2,196 20,818 0.35 3.29 1,771.89
HO 75 1,139 32,424 0.41 11.68 152
KH 47 504 32,643 0.47 30.20 38.38
BB 13 78 63,095 1.00 808.91 10.62

N is the number of nodes, M is the number of unique links (i.e. connected pairs), 
m is the number of multiedges, d is the density (fraction of connected pairs), ρ is 
the multiedge density (average number of multiedges per pair of nodes). Note 
how all datasets except for BB are very sparse (i.e. d ≪ 1) despite thelarge ρ.
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both a high clustering coefficient and a low average path length. 
Small-world networks facilitate efficient communication and dif
fusion processes, as they maintain short paths between nodes 
while also forming densely connected clusters.

Due to their higher predicted density, classical network models 
struggle to reproduce these characteristics. In Fig. 4 (center), we 
show the percentage of the empirical average path length cap
tured by the DCSBM and zi-DCSBM models across the datasets, 
and in Fig. 4 (top), we show the percentage of the empirical clus
tering coefficient for both models.

Overall, our results demonstrate that the zi-DCSBM provides a 
substantially closer match to the empirical properties of the net
work analyzed compared with the standard DCSBM. This im
provement highlights the zi-DCSBM’s ability to better preserve 
network sparsity and realistic connectivity patterns, avoiding 
the artificial inflation of connectivity that tends to occur in classic
al multiedge network models.

Discussion
Our study reveals significant limitations of classical multiedge 
network models and the potential of zero-inflated models to over
come these challenges. We have shown that empirical multiedge 

networks tend to be sparse despite having a large number of 

edges. This sparsity means that many edges are bundled on a 

few node pairs, resulting in bimodal edge count distributions 
with excess zeroes and heavy tails. These characteristics pose 

considerable difficulties for traditional multiedge network models 

as they often fail to capture the sparse nature of real-world net

works. Consequently, key features of empirical networks such 
as diffusion speed and small-worldness are misrepresented. 

Hence, the practical usability of these network models is limited.
To mitigate these limitations, we show how classical multiedge 

network models can be extended to incorporate zero-inflation. 

This mechanism accounts for the excess number of zeroes 

A B

Fig. 2. (top) Edge count distributions for two exemplary Sociopatterns datasets (HS13 in panel A, and KH in panel B). The bar plot shows the empirical 
edge count distribution. The height of a bar denotes the fraction of pairs in the network connected by a given range of multiedges. In red, the expected 
edge count distribution according to a DCSBM whose blocks have been obtained by modularity maximization. In blue, the expected edge count 
distribution according to its zero-inflated variant, fitted using the same blocks. (bottom) Cumulative error for the two models. In HS13, most of the 
difference between the two models can be attributed to the left side of the edge count distribution and pairs with low edge counts. In KH, not only is the 
DCSBM unable to capture the network sparsity, but it also fails to capture the heavy-tailed nature of the edge count distribution. The zi-DCSBM provides a 
better fit in both cases.
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Fig. 3. Comparison of the DCSBM and zi-DCSBM fits for the KH dataset. On the left side, the network is visualized as a multigraph with parallel edges 
denoting multiedges in log10 base (i.e. 1 edge represents one interaction, 2 parallel edges represent 10 interactions, and so on). Nodes are colored 
according to the labels inferred by modularity maximization. The “lens” plots show a random realization from the DCSBM (bottom) and zi-DCSBM (top). 
On the right, the adjacency matrices of the random realizations are visualized against the empirical network. These plots clearly highlight how the 
DCSBM fails to capture the sparsity of the empirical data.

Fig. 4. The zi-DCSBM captures properties of empirical networks significantly better that its nonzero inflated variant. (top) Percentage of the empirical 
average clustering coefficient captured by DCSBM (red, left bar) and zi-DCSBM (blue, right bar) for all the Sociopatterns datasets. (center) Percentage of the 
empirical average shortest path length captured by DCSBM (red, left bar) and zi-DCSBM (blue, righ bar) for all the Sociopatterns datasets. (bottom) 
Percentage of the empirical spectral gap captured by DCSBM (red, left bar) and zi-DCSBM (blue, right bar) for all the Sociopatterns datasets. The expected 
values of the properties of each model have been computed from 1,000 realizations.
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(disconnected pairs) observed in empirical data. Zero-inflation not 
only helps reproduce network sparsity but also remedies several 
critical shortcomings of classical multiedge network models: 
Both diffusion speed and small-worldness are better captured 
via zero-inflated models.

Our results indicate that, while zero-inflation significantly enhan
ces the fit of the models to empirical data, there remain areas for im
provement. As shown in Supplementary Material D, one important 
challenge is computational complexity: the numerical MLE scales 
poorly with large networks, especially when considering heteroge
neous zero-inflation. Moreover, in this article, we have used modu
larity maximization to infer “model-independent” node labels, 
allowing us to compare zero-inflated models with classical counter
parts without the confounding effects of differing block structures. 
However, developing block inference algorithms specifically tailored 
for zero-inflated models would yield more accurate representations 
of network structures. This is particularly important because blocks 
derived from modularity maximization, while useful, do not always 
capture the full complexity of empirical networks and do not fully 
exploit the advantages of zero-inflation.

Furthermore, the zero-inflated Poisson models used here are 
limited by the restrictive mean-variance relationship of the 
Poisson distribution, which may not adequately account for over- 
dispersion—a common feature of count data (36). Employing 
more flexible distributions, such as the negative binomial or gen
eralized hypergeometric distributions, could improve model fit by 
better capturing over-dispersion, particularly in networks with 
more complex count structures (16, 19).

Our findings suggest that zero-inflated models provide a more 
detailed understanding of networks, capturing both the sparsity 
and the extreme events reflected in the data. This aligns with 
the need for accurate models in various applications, such as op
timizing distribution systems, understanding disease spread, and 
analyzing social behaviors. In our study, the example networks 
are so sparse that the necessity of zero-inflation is evident. 
However, in less extreme cases, determining the need for 
zero-inflation versus an appropriate choice of block structure be
comes essential. To address this, appropriate likelihood-ratio 
tests and model comparison techniques have been developed 
for various models (16, 19, 20, 40). These methods can help ascer
tain the necessity of zero-inflation by comparing the fit and per
formance of different models on the same dataset, providing a 
rigorous basis for model selection. Further work in this direction 
is needed to adapt these model selection techniques to high- 
dimensional, sparse network settings where zero-inflation may 
play a critical role in accurately capturing network structure.
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